Ricci curvature bounds and rigidity for non-smooth Riemannian and semi-Riemannian metrics.

IF 0.6 4区 数学 Q3 MATHEMATICS
Manuscripta Mathematica Pub Date : 2025-01-01 Epub Date: 2025-07-22 DOI:10.1007/s00229-025-01655-6
Michael Kunzinger, Argam Ohanyan, Alessio Vardabasso
{"title":"Ricci curvature bounds and rigidity for non-smooth Riemannian and semi-Riemannian metrics.","authors":"Michael Kunzinger, Argam Ohanyan, Alessio Vardabasso","doi":"10.1007/s00229-025-01655-6","DOIUrl":null,"url":null,"abstract":"<p><p>We study rigidity problems for Riemannian and semi-Riemannian manifolds with metrics of low regularity. Specifically, we prove a version of the Cheeger-Gromoll splitting theorem [22] for Riemannian metrics and the flatness criterion for semi-Riemannian metrics of regularity <math><msup><mi>C</mi> <mn>1</mn></msup> </math> . With our proof of the splitting theorem, we are able to obtain an isometry of higher regularity than the Lipschitz regularity guaranteed by the <math><mi>RCD</mi></math> -splitting theorem [30, 31]. Along the way, we establish a Bochner-Weitzenböck identity which permits both the non-smoothness of the metric and of the vector fields, complementing a recent similar result in [62]. The last section of the article is dedicated to the discussion of various notions of Sobolev spaces in low regularity, as well as an alternative proof of the equivalence (see [62]) between distributional Ricci curvature bounds and <math><mi>RCD</mi></math> -type bounds, using in part the stability of the variable <math><mi>CD</mi></math> -condition under suitable limits [47].</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"176 4","pages":"53"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-025-01655-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study rigidity problems for Riemannian and semi-Riemannian manifolds with metrics of low regularity. Specifically, we prove a version of the Cheeger-Gromoll splitting theorem [22] for Riemannian metrics and the flatness criterion for semi-Riemannian metrics of regularity C 1 . With our proof of the splitting theorem, we are able to obtain an isometry of higher regularity than the Lipschitz regularity guaranteed by the RCD -splitting theorem [30, 31]. Along the way, we establish a Bochner-Weitzenböck identity which permits both the non-smoothness of the metric and of the vector fields, complementing a recent similar result in [62]. The last section of the article is dedicated to the discussion of various notions of Sobolev spaces in low regularity, as well as an alternative proof of the equivalence (see [62]) between distributional Ricci curvature bounds and RCD -type bounds, using in part the stability of the variable CD -condition under suitable limits [47].

非光滑黎曼和半黎曼度量的Ricci曲率界和刚性。
研究了具有低正则度量的黎曼流形和半黎曼流形的刚性问题。具体来说,我们证明了黎曼度量的Cheeger-Gromoll分裂定理[22]的一个版本和正则性c1的半黎曼度量的平坦性判据。通过对分裂定理的证明,我们可以得到比RCD分裂定理所保证的Lipschitz正则性更高的等距[30,31]。在此过程中,我们建立了一个Bochner-Weitzenböck恒等式,它允许度规和向量场的非光滑,补充了[62]中最近的类似结果。本文的最后一部分致力于讨论低正则性Sobolev空间的各种概念,以及分布Ricci曲率界和RCD型界之间的等价性的另一种证明(参见[62]),部分使用了变量CD -条件在适当极限[47]下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信