DP-AMF: Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion for Single-View 3D Reconstruction.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Luoxi Zhang, Chun Xie, Itaru Kitahara
{"title":"DP-AMF: Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion for Single-View 3D Reconstruction.","authors":"Luoxi Zhang, Chun Xie, Itaru Kitahara","doi":"10.3390/jimaging11070246","DOIUrl":null,"url":null,"abstract":"<p><p>Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion framework that integrates high-fidelity depth priors-generated offline by the MARIGOLD diffusion-based estimator and cached to avoid extra training cost-with hierarchical local features from ResNet-32/ResNet-18 and semantic global features from DINO-ViT. A learnable fusion module dynamically adjusts per-channel weights to balance these modalities according to local texture and occlusion, and an implicit signed-distance field decoder reconstructs the final mesh. Extensive experiments on 3D-FRONT and Pix3D demonstrate that DP-AMF reduces Chamfer Distance by 7.64%, increases F-Score by 2.81%, and boosts Normal Consistency by 5.88% compared to strong baselines, while qualitative results show sharper edges and more complete geometry in challenging scenes. DP-AMF achieves these gains without substantially increasing model size or inference time, offering a robust and effective solution for complex single-view reconstruction tasks.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion framework that integrates high-fidelity depth priors-generated offline by the MARIGOLD diffusion-based estimator and cached to avoid extra training cost-with hierarchical local features from ResNet-32/ResNet-18 and semantic global features from DINO-ViT. A learnable fusion module dynamically adjusts per-channel weights to balance these modalities according to local texture and occlusion, and an implicit signed-distance field decoder reconstructs the final mesh. Extensive experiments on 3D-FRONT and Pix3D demonstrate that DP-AMF reduces Chamfer Distance by 7.64%, increases F-Score by 2.81%, and boosts Normal Consistency by 5.88% compared to strong baselines, while qualitative results show sharper edges and more complete geometry in challenging scenes. DP-AMF achieves these gains without substantially increasing model size or inference time, offering a robust and effective solution for complex single-view reconstruction tasks.

DP-AMF:深度先验引导自适应多模态和全局-局部融合的单视图三维重建。
单视图3D重建从根本上来说仍然是病态的,因为单个RGB图像缺乏尺度和深度线索,经常在遮挡或纹理差的区域产生模糊的结果。我们提出了一种新的深度先验引导的自适应多模态和全局-局部融合框架DP-AMF,该框架将基于MARIGOLD扩散估计器离线生成的高保真深度先验与来自ResNet-32/ResNet-18的分层局部特征和来自DINO-ViT的语义全局特征集成在一起,以避免额外的训练成本。一个可学习的融合模块根据局部纹理和遮挡动态调整每个通道的权重来平衡这些模式,一个隐式符号距离场解码器重建最终的网格。在3D-FRONT和Pix3D上的大量实验表明,与强基线相比,DP-AMF减少了7.64%的倒角距离,提高了2.81%的F-Score,提高了5.88%的正常一致性,而定性结果在具有挑战性的场景中显示出更清晰的边缘和更完整的几何形状。DP-AMF在不大幅增加模型大小或推理时间的情况下实现了这些增益,为复杂的单视图重建任务提供了鲁棒和有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信