{"title":"DP-AMF: Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion for Single-View 3D Reconstruction.","authors":"Luoxi Zhang, Chun Xie, Itaru Kitahara","doi":"10.3390/jimaging11070246","DOIUrl":null,"url":null,"abstract":"<p><p>Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion framework that integrates high-fidelity depth priors-generated offline by the MARIGOLD diffusion-based estimator and cached to avoid extra training cost-with hierarchical local features from ResNet-32/ResNet-18 and semantic global features from DINO-ViT. A learnable fusion module dynamically adjusts per-channel weights to balance these modalities according to local texture and occlusion, and an implicit signed-distance field decoder reconstructs the final mesh. Extensive experiments on 3D-FRONT and Pix3D demonstrate that DP-AMF reduces Chamfer Distance by 7.64%, increases F-Score by 2.81%, and boosts Normal Consistency by 5.88% compared to strong baselines, while qualitative results show sharper edges and more complete geometry in challenging scenes. DP-AMF achieves these gains without substantially increasing model size or inference time, offering a robust and effective solution for complex single-view reconstruction tasks.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-view 3D reconstruction remains fundamentally ill-posed, as a single RGB image lacks scale and depth cues, often yielding ambiguous results under occlusion or in texture-poor regions. We propose DP-AMF, a novel Depth-Prior-Guided Adaptive Multi-Modal and Global-Local Fusion framework that integrates high-fidelity depth priors-generated offline by the MARIGOLD diffusion-based estimator and cached to avoid extra training cost-with hierarchical local features from ResNet-32/ResNet-18 and semantic global features from DINO-ViT. A learnable fusion module dynamically adjusts per-channel weights to balance these modalities according to local texture and occlusion, and an implicit signed-distance field decoder reconstructs the final mesh. Extensive experiments on 3D-FRONT and Pix3D demonstrate that DP-AMF reduces Chamfer Distance by 7.64%, increases F-Score by 2.81%, and boosts Normal Consistency by 5.88% compared to strong baselines, while qualitative results show sharper edges and more complete geometry in challenging scenes. DP-AMF achieves these gains without substantially increasing model size or inference time, offering a robust and effective solution for complex single-view reconstruction tasks.