{"title":"PS-YOLO-seg: A Lightweight Instance Segmentation Method for Lithium Mineral Microscopic Images Based on Improved YOLOv12-seg.","authors":"Zeyang Qiu, Xueyu Huang, Zhicheng Deng, Xiangyu Xu, Zhenzhong Qiu","doi":"10.3390/jimaging11070230","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge devices, we propose PS-YOLO-seg, a lightweight segmentation model specifically designed for lithium mineral analysis under visible light microscopy. The network is compressed by adjusting the width factor to reduce global channel redundancy. A PSConv-based downsampling strategy enhances the network's ability to capture dim mineral textures under microscopic conditions. In addition, the improved C3k2-PS module strengthens feature extraction, while the streamlined Segment-Efficient head minimizes redundant computation, further reducing the overall model complexity. PS-YOLO-seg achieves a slightly improved segmentation performance compared to the baseline YOLOv12n model on a self-constructed lithium ore microscopic dataset, while reducing FLOPs by 20%, parameter count by 33%, and model size by 32%. Additionally, it achieves a faster inference speed, highlighting its potential for practical deployment. This work demonstrates how architectural optimization and targeted enhancements can significantly improve instance segmentation performance while maintaining speed and compactness, offering strong potential for real-time deployment in industrial settings and edge computing scenarios.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge devices, we propose PS-YOLO-seg, a lightweight segmentation model specifically designed for lithium mineral analysis under visible light microscopy. The network is compressed by adjusting the width factor to reduce global channel redundancy. A PSConv-based downsampling strategy enhances the network's ability to capture dim mineral textures under microscopic conditions. In addition, the improved C3k2-PS module strengthens feature extraction, while the streamlined Segment-Efficient head minimizes redundant computation, further reducing the overall model complexity. PS-YOLO-seg achieves a slightly improved segmentation performance compared to the baseline YOLOv12n model on a self-constructed lithium ore microscopic dataset, while reducing FLOPs by 20%, parameter count by 33%, and model size by 32%. Additionally, it achieves a faster inference speed, highlighting its potential for practical deployment. This work demonstrates how architectural optimization and targeted enhancements can significantly improve instance segmentation performance while maintaining speed and compactness, offering strong potential for real-time deployment in industrial settings and edge computing scenarios.