PS-YOLO-seg: A Lightweight Instance Segmentation Method for Lithium Mineral Microscopic Images Based on Improved YOLOv12-seg.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Zeyang Qiu, Xueyu Huang, Zhicheng Deng, Xiangyu Xu, Zhenzhong Qiu
{"title":"PS-YOLO-seg: A Lightweight Instance Segmentation Method for Lithium Mineral Microscopic Images Based on Improved YOLOv12-seg.","authors":"Zeyang Qiu, Xueyu Huang, Zhicheng Deng, Xiangyu Xu, Zhenzhong Qiu","doi":"10.3390/jimaging11070230","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge devices, we propose PS-YOLO-seg, a lightweight segmentation model specifically designed for lithium mineral analysis under visible light microscopy. The network is compressed by adjusting the width factor to reduce global channel redundancy. A PSConv-based downsampling strategy enhances the network's ability to capture dim mineral textures under microscopic conditions. In addition, the improved C3k2-PS module strengthens feature extraction, while the streamlined Segment-Efficient head minimizes redundant computation, further reducing the overall model complexity. PS-YOLO-seg achieves a slightly improved segmentation performance compared to the baseline YOLOv12n model on a self-constructed lithium ore microscopic dataset, while reducing FLOPs by 20%, parameter count by 33%, and model size by 32%. Additionally, it achieves a faster inference speed, highlighting its potential for practical deployment. This work demonstrates how architectural optimization and targeted enhancements can significantly improve instance segmentation performance while maintaining speed and compactness, offering strong potential for real-time deployment in industrial settings and edge computing scenarios.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge devices, we propose PS-YOLO-seg, a lightweight segmentation model specifically designed for lithium mineral analysis under visible light microscopy. The network is compressed by adjusting the width factor to reduce global channel redundancy. A PSConv-based downsampling strategy enhances the network's ability to capture dim mineral textures under microscopic conditions. In addition, the improved C3k2-PS module strengthens feature extraction, while the streamlined Segment-Efficient head minimizes redundant computation, further reducing the overall model complexity. PS-YOLO-seg achieves a slightly improved segmentation performance compared to the baseline YOLOv12n model on a self-constructed lithium ore microscopic dataset, while reducing FLOPs by 20%, parameter count by 33%, and model size by 32%. Additionally, it achieves a faster inference speed, highlighting its potential for practical deployment. This work demonstrates how architectural optimization and targeted enhancements can significantly improve instance segmentation performance while maintaining speed and compactness, offering strong potential for real-time deployment in industrial settings and edge computing scenarios.

Abstract Image

Abstract Image

Abstract Image

ps - YOLOv12-seg:基于改进YOLOv12-seg的锂矿显微图像轻量化实例分割方法
显微图像自动识别是矿物成分分析的核心技术,对推进智能采矿系统的智能化发展具有至关重要的作用。为了克服传统锂矿分析的局限性,并应对在边缘设备上部署的挑战,我们提出了PS-YOLO-seg,这是一种专为可见光显微镜下锂矿分析设计的轻量级分割模型。通过调整宽度因子来压缩网络,以减少全局信道冗余。基于psconvs的下采样策略增强了网络在微观条件下捕获暗淡矿物纹理的能力。此外,改进的C3k2-PS模块加强了特征提取,而流线型的Segment-Efficient头部最大限度地减少了冗余计算,进一步降低了整体模型的复杂度。ps - yoloo -seg在自构建的锂矿微观数据集上实现了比基线YOLOv12n模型稍微改进的分割性能,同时减少了20%的FLOPs, 33%的参数数量和32%的模型尺寸。此外,它实现了更快的推理速度,突出了其实际部署的潜力。这项工作展示了架构优化和有针对性的增强如何在保持速度和紧凑性的同时显著提高实例分割性能,为工业环境和边缘计算场景中的实时部署提供了强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信