Yan Xu, Xuesong Wang, Xiaolei Zhou, Lulu Peng, Jiayi Yuan, Yichi Zhang, Nan Wu, Junsong Ye
{"title":"Nitric oxide‑mediated S‑Nitrosylation contributes to signaling transduction in human physiological and pathological status (Review).","authors":"Yan Xu, Xuesong Wang, Xiaolei Zhou, Lulu Peng, Jiayi Yuan, Yichi Zhang, Nan Wu, Junsong Ye","doi":"10.3892/ijmm.2025.5593","DOIUrl":null,"url":null,"abstract":"<p><p>In the complex development of various diseases, nitric oxide‑mediated S‑nitrosylation is increasingly recognized for its distinct regulatory function. Recent research has advanced our knowledge of how this nitric oxide‑dependent modification is dynamically controlled under both physiological and pathological conditions. S‑nitrosylation plays a key role in regulating mitochondrial function, gene transcription, cellular homeostasis and metabolism and it is also involved in the pathogenesis of cardiovascular disorders, neurological conditions and cancer. The present review outlined the signaling pathways driven by nitric oxide and describes the formation, specificity and factors that influence S‑nitrosylation levels. It also compared the strengths and limitations of different detection methods for S‑nitrosation reactions. The present review discussed the cellular regulatory mechanisms affected by S‑nitrosylation to clarify how certain major diseases are connected to specific S‑nitrosylated proteins. These insights may guide the development of targeted repair strategies for malfunctioning proteins by focusing on defined S‑nitrosylation sites, offering theoretical support for disease intervention and treatment.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 4","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5593","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the complex development of various diseases, nitric oxide‑mediated S‑nitrosylation is increasingly recognized for its distinct regulatory function. Recent research has advanced our knowledge of how this nitric oxide‑dependent modification is dynamically controlled under both physiological and pathological conditions. S‑nitrosylation plays a key role in regulating mitochondrial function, gene transcription, cellular homeostasis and metabolism and it is also involved in the pathogenesis of cardiovascular disorders, neurological conditions and cancer. The present review outlined the signaling pathways driven by nitric oxide and describes the formation, specificity and factors that influence S‑nitrosylation levels. It also compared the strengths and limitations of different detection methods for S‑nitrosation reactions. The present review discussed the cellular regulatory mechanisms affected by S‑nitrosylation to clarify how certain major diseases are connected to specific S‑nitrosylated proteins. These insights may guide the development of targeted repair strategies for malfunctioning proteins by focusing on defined S‑nitrosylation sites, offering theoretical support for disease intervention and treatment.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.