Predicting Traumatic Brain Injury Post-Trauma Using Temporal Attention on Sleep-Wake Data.

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Soheil Saghafi, Qiao Li, Thomas C Neylan, Tommy T Thomas, Jennifer S Stevens, Tanja Jovanovic, Laura T Germine, Meredith A Bucher, Megan E Huibregtse, Sarah D Linnstaedt, Xinming An, Nathaniel G Harnett, Seth D Norrholm, Alana C Conti, Antonia V Seligowski, Daniel G Dillon, Lisa M Vizer, Lauren A McKibben, Liz Marie Albertorio-Saez, Francesca L Beaudoin, Liana Matson, Vince D Calhoun, Steven E Harte, Steven E Bruce, John P Haran, Alan B Storrow, Christopher Lewandowski, Paul I Musey, Phyllis L Hendry, Robert A Swor, Claire Pearson, David A Peak, Brian J O'Neil, Ronald C Kessler, Karestan C Koenen, Samuel A McLean, Gari D Clifford, Ali Bahrami Rad
{"title":"Predicting Traumatic Brain Injury Post-Trauma Using Temporal Attention on Sleep-Wake Data.","authors":"Soheil Saghafi, Qiao Li, Thomas C Neylan, Tommy T Thomas, Jennifer S Stevens, Tanja Jovanovic, Laura T Germine, Meredith A Bucher, Megan E Huibregtse, Sarah D Linnstaedt, Xinming An, Nathaniel G Harnett, Seth D Norrholm, Alana C Conti, Antonia V Seligowski, Daniel G Dillon, Lisa M Vizer, Lauren A McKibben, Liz Marie Albertorio-Saez, Francesca L Beaudoin, Liana Matson, Vince D Calhoun, Steven E Harte, Steven E Bruce, John P Haran, Alan B Storrow, Christopher Lewandowski, Paul I Musey, Phyllis L Hendry, Robert A Swor, Claire Pearson, David A Peak, Brian J O'Neil, Ronald C Kessler, Karestan C Koenen, Samuel A McLean, Gari D Clifford, Ali Bahrami Rad","doi":"10.1109/TBME.2025.3592009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic Brain Injury (TBI) is a major public health concern, and accurate classification is essential for effective treatment and improved patient outcomes. Sleep/wake behavior has emerged as a potential biomarker for TBI classification, yet the optimal time window in which to identify sleep/wake changes after TBI remains unclear.</p><p><strong>Methods: </strong>We evaluated daily longitudinal sleep/wake data from a prospective cohort of more than 2,000 emergency department patients with and without blood biomarker-documented TBI (Glial Fibrillary Acidic Protein - GFAP $ > 268 \\frac{pg}{ml}$). We utilized a deep learning model to identify the impact of time from trauma and duration of data collection on the model's ability to distinguish between TBI-positive (TBI+) and TBI-negative (TBI-) cases.</p><p><strong>Results: </strong>Our analysis showed that sleep/wake data from the first 7 days after TBI most accurately identified TBI. Sleep-wake data from the first 7, 14, and 21 days after trauma achieved sensitivity/specificity of 81%/25%, 40%/66%, and 45%/58%, respectively. F1 scores of deep learning models developed from the first 7, 14, and 21 days were 22%, 21%, and 20%, respectively.</p><p><strong>Conclusions: </strong>The results suggest that early sleep/wake data has promise for assisting with TBI identification.</p><p><strong>Significance: </strong>In the future, the incorporation of sleep/wake derived biomarkers into TBI identification tools could assist in the identification of individuals with potential TBI for further screening and intervention.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3592009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traumatic Brain Injury (TBI) is a major public health concern, and accurate classification is essential for effective treatment and improved patient outcomes. Sleep/wake behavior has emerged as a potential biomarker for TBI classification, yet the optimal time window in which to identify sleep/wake changes after TBI remains unclear.

Methods: We evaluated daily longitudinal sleep/wake data from a prospective cohort of more than 2,000 emergency department patients with and without blood biomarker-documented TBI (Glial Fibrillary Acidic Protein - GFAP $ > 268 \frac{pg}{ml}$). We utilized a deep learning model to identify the impact of time from trauma and duration of data collection on the model's ability to distinguish between TBI-positive (TBI+) and TBI-negative (TBI-) cases.

Results: Our analysis showed that sleep/wake data from the first 7 days after TBI most accurately identified TBI. Sleep-wake data from the first 7, 14, and 21 days after trauma achieved sensitivity/specificity of 81%/25%, 40%/66%, and 45%/58%, respectively. F1 scores of deep learning models developed from the first 7, 14, and 21 days were 22%, 21%, and 20%, respectively.

Conclusions: The results suggest that early sleep/wake data has promise for assisting with TBI identification.

Significance: In the future, the incorporation of sleep/wake derived biomarkers into TBI identification tools could assist in the identification of individuals with potential TBI for further screening and intervention.

利用睡眠-觉醒数据的时间注意预测创伤性脑损伤。
背景:创伤性脑损伤(TBI)是一个主要的公共卫生问题,准确的分类对于有效治疗和改善患者预后至关重要。睡眠/清醒行为已成为脑外伤分类的潜在生物标志物,但识别脑外伤后睡眠/清醒变化的最佳时间窗仍不清楚。方法:我们评估了来自2000多名急诊科患者的每日纵向睡眠/清醒数据,这些患者有或没有血液生物标志物记录的TBI(胶质纤维酸性蛋白- GFAP $ > 268 \frac{pg}{ml}$)。我们利用深度学习模型来确定创伤时间和数据收集持续时间对模型区分TBI阳性(TBI+)和TBI阴性(TBI-)病例的能力的影响。结果:我们的分析显示,TBI后前7天的睡眠/清醒数据最准确地识别TBI。创伤后第7、14和21天的睡眠-觉醒数据分别达到81%/25%、40%/66%和45%/58%的敏感性/特异性。前7天、14天和21天开发的深度学习模型F1得分分别为22%、21%和20%。结论:研究结果表明,早期睡眠/清醒数据有助于TBI识别。意义:在未来,将睡眠/清醒衍生的生物标志物纳入TBI识别工具可以帮助识别潜在的TBI个体,以进行进一步的筛查和干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信