Mai T Pham, Michael J G Milevskiy, Jane E Visvader, Yunshun Chen
{"title":"Incorporating exon-exon junction reads enhances differential splicing detection.","authors":"Mai T Pham, Michael J G Milevskiy, Jane E Visvader, Yunshun Chen","doi":"10.1186/s12859-025-06210-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>RNA sequencing (RNA-seq) is a gold standard technology for studying gene and transcript expression. Different transcripts from the same gene are usually determined by varying combinations of exons within the gene, formed by splicing events. One method of studying differential alternative splicing between groups in short-read RNA-seq experiments is through differential exon usage (DEU) analysis, which uses exon-level read counts along with downstream statistical testing strategies. However, the standard exon counting method does not consider exon-junction information, which may reduce the statistical power in detecting splicing alterations.</p><p><strong>Results: </strong>We present a new workflow for differential splicing analysis, called differential exon-junction usage (DEJU). This DEJU analysis workflow adopts a new feature quantification approach that jointly summarises exon and exon-exon junction reads, which are then integrated into the established Rsubread-edgeR/limma frameworks. We performed comprehensive simulation studies to benchmark the performance of DEJU against existing methods. We also applied DEJU to a mouse mammary gland RNA-seq dataset, revealing biologically meaningful splicing events that could not be detected previously.</p><p><strong>Conclusions: </strong>We demonstrate that incorporating exon-exon junction reads significantly improves the detection of differential splicing events. The proposed DEJU workflow offers increased statistical power and computational efficiency compared to widely used existing approaches, while effectively controlling the false discovery rate.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"193"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06210-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: RNA sequencing (RNA-seq) is a gold standard technology for studying gene and transcript expression. Different transcripts from the same gene are usually determined by varying combinations of exons within the gene, formed by splicing events. One method of studying differential alternative splicing between groups in short-read RNA-seq experiments is through differential exon usage (DEU) analysis, which uses exon-level read counts along with downstream statistical testing strategies. However, the standard exon counting method does not consider exon-junction information, which may reduce the statistical power in detecting splicing alterations.
Results: We present a new workflow for differential splicing analysis, called differential exon-junction usage (DEJU). This DEJU analysis workflow adopts a new feature quantification approach that jointly summarises exon and exon-exon junction reads, which are then integrated into the established Rsubread-edgeR/limma frameworks. We performed comprehensive simulation studies to benchmark the performance of DEJU against existing methods. We also applied DEJU to a mouse mammary gland RNA-seq dataset, revealing biologically meaningful splicing events that could not be detected previously.
Conclusions: We demonstrate that incorporating exon-exon junction reads significantly improves the detection of differential splicing events. The proposed DEJU workflow offers increased statistical power and computational efficiency compared to widely used existing approaches, while effectively controlling the false discovery rate.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.