Energy Insights on Dissociative Chemisorption of (H   2 $$ {}_2 $$ O)   n = 1 , 2 , 3 $$ {}_{n=1,2,3} $$ on Rutile-TiO   2 $$ {}_2 $$ (110)

IF 2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yuyuan Zhang, Jinke Yu, Feiran Sun, Qingyong Meng
{"title":"Energy Insights on Dissociative Chemisorption of (H\n \n \n \n  \n \n 2\n \n \n \n $$ {}_2 $$\n O)\n \n \n \n  \n \n n\n =\n 1\n ,\n 2\n ,\n 3\n \n \n \n $$ {}_{n=1,2,3} $$\n on Rutile-TiO\n \n \n \n  \n \n 2\n \n \n \n $$ {}_2 $$\n (110)","authors":"Yuyuan Zhang,&nbsp;Jinke Yu,&nbsp;Feiran Sun,&nbsp;Qingyong Meng","doi":"10.1002/qua.70093","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, dissociative chemisorption of (H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>O)<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_n $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ n=1,2,3 $$</annotation>\n </semantics></math>, on Rutile(R)-TiO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>(110) was systematically studied by computing initial-geometry-specific potential energy curves (PECs) through the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Due to orientational hydrogen-bonding interactions, (H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>O)<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_n $$</annotation>\n </semantics></math> adsorbs on oxygen sites if it approaches to surface with the appropriate conformation. In general, the water molecule preferentially chemisorbs on the five-fold titanium atom (Ti<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>5</mn>\n <mi>c</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{5\\mathrm{c}} $$</annotation>\n </semantics></math>) but never adsorbs on the six-fold one (Ti<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>6</mn>\n <mi>c</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{6\\mathrm{c}} $$</annotation>\n </semantics></math>), while the second water molecule again preferentially chemisorbs on the nearest Ti<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>5</mn>\n <mi>c</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{5\\mathrm{c}} $$</annotation>\n </semantics></math> atom. This is consistent with experimental measurements (<i>Chem. Soc. Rev.</i> <b>45</b> (2016), 3701 and <i>Chem. Rev.</i> <b>119</b>\n(2019), 11020). Moreover, PECs for the dissociations of various O-H bonds are computed. The dissociation barriers with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ n=1,2,3 $$</annotation>\n </semantics></math> imply that dissociation ability increases with the increase of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>. This is different from experiments on photon-dissociation (<i>Chem. Rev.</i> <b>119</b> (2019), 11020) which experimentally indicated that water dimer (i.e., <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$$ n=2 $$</annotation>\n </semantics></math>) has the largest photon-dissociation probability. This discrepancy between calculation and experiment implies the necessity of non-adiabatic quantum dynamics based on new potential energy surfaces, because the previous experiments focused on the photon-dissociation of (H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>O)<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_n $$</annotation>\n </semantics></math> on R-TiO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>(110) with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ n=1,2,3 $$</annotation>\n </semantics></math>. Based on the present PBE calculations, discussions on previous experiments and calculations are also given.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 15","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70093","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, dissociative chemisorption of (H 2 $$ {}_2 $$ O) n $$ {}_n $$ , n = 1 , 2 , 3 $$ n=1,2,3 $$ , on Rutile(R)-TiO 2 $$ {}_2 $$ (110) was systematically studied by computing initial-geometry-specific potential energy curves (PECs) through the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Due to orientational hydrogen-bonding interactions, (H 2 $$ {}_2 $$ O) n $$ {}_n $$ adsorbs on oxygen sites if it approaches to surface with the appropriate conformation. In general, the water molecule preferentially chemisorbs on the five-fold titanium atom (Ti 5 c $$ {}_{5\mathrm{c}} $$ ) but never adsorbs on the six-fold one (Ti 6 c $$ {}_{6\mathrm{c}} $$ ), while the second water molecule again preferentially chemisorbs on the nearest Ti 5 c $$ {}_{5\mathrm{c}} $$ atom. This is consistent with experimental measurements (Chem. Soc. Rev. 45 (2016), 3701 and Chem. Rev. 119 (2019), 11020). Moreover, PECs for the dissociations of various O-H bonds are computed. The dissociation barriers with n = 1 , 2 , 3 $$ n=1,2,3 $$ imply that dissociation ability increases with the increase of n $$ n $$ . This is different from experiments on photon-dissociation (Chem. Rev. 119 (2019), 11020) which experimentally indicated that water dimer (i.e., n = 2 $$ n=2 $$ ) has the largest photon-dissociation probability. This discrepancy between calculation and experiment implies the necessity of non-adiabatic quantum dynamics based on new potential energy surfaces, because the previous experiments focused on the photon-dissociation of (H 2 $$ {}_2 $$ O) n $$ {}_n $$ on R-TiO 2 $$ {}_2 $$ (110) with n = 1 , 2 , 3 $$ n=1,2,3 $$ . Based on the present PBE calculations, discussions on previous experiments and calculations are also given.

Abstract Image

解离化学吸附(h2 $$ {}_2 $$ O) n = 1,2,3 $$ {}_{n=1,2,3} $$ on金红石- tio2 $$ {}_2 $$ (110)
在这项工作中,离解化学吸附(h2 $$ {}_2 $$ O) n $$ {}_n $$,N = 1,2,3 $$ n=1,2,3 $$,通过Perdew-Burke-Ernzerhof (PBE)交换相关泛函数计算初始几何特定势能曲线(PECs),系统地研究了金红石(R)- tio2 $$ {}_2 $$(110)的结构。由于取向氢键相互作用,(h2 $$ {}_2 $$ O) n $$ {}_n $$在接近表面时,会吸附在氧位点上构象。一般来说,水分子优先与五倍钛原子(Ti 5c $$ {}_{5\mathrm{c}} $$)发生化学吸附,但从不吸附六倍钛原子(Ti 6c)$$ {}_{6\mathrm{c}} $$),而第二个水分子再次优先化学吸附在最近的ti5c $$ {}_{5\mathrm{c}} $$原子上。这与实验测量结果是一致的。Soc。Rev. 45 (2016), 3701 and Chem。Rev. 119(2019), 11020)。此外,还计算了各种O-H键离解的PECs。当n = 1、2、3 $$ n=1,2,3 $$时的解离势垒表明,解离能力随n的增加而增加$$ n $$。这与化学中的光子离解实验不同。Rev. 119(2019), 11020),实验表明水二聚体(即n = 2 $$ n=2 $$)具有最大的光子解离概率。计算和实验之间的差异暗示了基于新势能面的非绝热量子动力学的必要性,因为之前的实验集中在(h2 $$ {}_2 $$ O) n $$ {}_n $$ on的光子解离上r - tio2 $$ {}_2 $$ (110), n = 1,2,3 $$ n=1,2,3 $$。在本文计算的基础上,对以往的实验和计算进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信