Mask-Guided and Confidence-Driven Unsupervised Domain Adaptation for Hyperspectral Cross-Scene Classification

Ying Cui;Longyu Zhu;Liguo Wang;Shan Gao;Chunhui Zhao
{"title":"Mask-Guided and Confidence-Driven Unsupervised Domain Adaptation for Hyperspectral Cross-Scene Classification","authors":"Ying Cui;Longyu Zhu;Liguo Wang;Shan Gao;Chunhui Zhao","doi":"10.1109/LGRS.2025.3589677","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) classification holds great potential for practical applications, but its widespread adoption is limited by the high cost of manual annotation. While unsupervised domain adaptation (UDA) offers a solution by transferring knowledge from labeled source domains (SDs) to unlabeled target domains (TDs), existing methods primarily focus on statistical-level distribution alignment, neglecting instance-level variations in TD data. In addition, for the interfering information such as noise and redundancy that are prevalent in HSI, there are few methods to consider processing the original data at the point level. To overcome these limitations, we propose a mask-guided and confidence-driven UDA (MCUDA) method. It introduces point-level learnable masks to dynamically optimize the input HSI data cube, effectively suppressing interference and enhancing domain-invariant feature extraction. It also proposes a pseudolabel sample set generation strategy based on the idea of confident learning, which takes into account the instance-level differences and domain-related information of TD data. Comprehensive experiments on two cross-scene datasets demonstrate that MCUDA outperforms existing UDA methods, achieving superior classification accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082262/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral image (HSI) classification holds great potential for practical applications, but its widespread adoption is limited by the high cost of manual annotation. While unsupervised domain adaptation (UDA) offers a solution by transferring knowledge from labeled source domains (SDs) to unlabeled target domains (TDs), existing methods primarily focus on statistical-level distribution alignment, neglecting instance-level variations in TD data. In addition, for the interfering information such as noise and redundancy that are prevalent in HSI, there are few methods to consider processing the original data at the point level. To overcome these limitations, we propose a mask-guided and confidence-driven UDA (MCUDA) method. It introduces point-level learnable masks to dynamically optimize the input HSI data cube, effectively suppressing interference and enhancing domain-invariant feature extraction. It also proposes a pseudolabel sample set generation strategy based on the idea of confident learning, which takes into account the instance-level differences and domain-related information of TD data. Comprehensive experiments on two cross-scene datasets demonstrate that MCUDA outperforms existing UDA methods, achieving superior classification accuracy.
基于掩模制导和置信度驱动的无监督域自适应高光谱跨场景分类
高光谱图像(HSI)分类具有很大的实际应用潜力,但人工标注的高成本限制了其广泛应用。虽然无监督域自适应(UDA)通过将知识从标记的源域(sd)转移到未标记的目标域(TD)提供了一种解决方案,但现有方法主要关注统计级分布对齐,忽略了TD数据中的实例级变化。此外,对于HSI中普遍存在的噪声和冗余等干扰信息,很少有方法考虑在点水平上处理原始数据。为了克服这些限制,我们提出了一种掩模引导和信心驱动的UDA (MCUDA)方法。引入点级可学习掩码对输入HSI数据立方体进行动态优化,有效抑制干扰,增强域不变特征提取。并提出了一种基于自信学习思想的伪标签样本集生成策略,该策略考虑了TD数据的实例级差异和领域相关信息。在两个跨场景数据集上的综合实验表明,MCUDA优于现有的UDA方法,获得了更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信