{"title":"LossFIQA: A Shortcut Solution to Image Quality Assessment Using Loss for Faces and Beyond","authors":"Marek Vaško;Adam Herout","doi":"10.1109/ACCESS.2025.3589778","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach to model-based quality assessment of input images. Our approach is very simple, and we demonstrate experimentally that it is not limited to a single domain (typically face recognition in the literature). Our approach generates per-sample quality pseudo-labels directly from the objective function used during the training of the target model. We evaluate the proposed method on eight large and respected datasets (from the face recognition on LFW, CALFW, CPLFW, XQLFW, CFP-FP, AgeDB, IJB-C, and retinopathy detection domain on EyePACS dataset) and using multiple state-of-the-art models (AdaFace, MagFace, ArcFace, ElasticFace, and CuricularFace). Compared to state-of-the-art methods for face quality assessment that are considerably more complex, our solution yields competitive results while being much simpler and not limited to one application.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"126915-126924"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11082134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11082134/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a novel approach to model-based quality assessment of input images. Our approach is very simple, and we demonstrate experimentally that it is not limited to a single domain (typically face recognition in the literature). Our approach generates per-sample quality pseudo-labels directly from the objective function used during the training of the target model. We evaluate the proposed method on eight large and respected datasets (from the face recognition on LFW, CALFW, CPLFW, XQLFW, CFP-FP, AgeDB, IJB-C, and retinopathy detection domain on EyePACS dataset) and using multiple state-of-the-art models (AdaFace, MagFace, ArcFace, ElasticFace, and CuricularFace). Compared to state-of-the-art methods for face quality assessment that are considerably more complex, our solution yields competitive results while being much simpler and not limited to one application.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.