Cynthia Recoules , Chloé Huertas , Julien Vignard, Marc Audebert
{"title":"Comparison of different techniques for γH2AX/pH3 biomarkers quantification for chemical genotoxicity assessment","authors":"Cynthia Recoules , Chloé Huertas , Julien Vignard, Marc Audebert","doi":"10.1016/j.mrgentox.2025.503878","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical risk assessment relies on <em>in vitro</em> genotoxicity tests. Histone modifications (γH2AX and pH3) have emerged as valuable biomarkers for genotoxicity detection. In this study, we compared three parameters (global intensity, nuclear intensity, and foci number) for the γH2AX biomarker and two parameters (global intensity and % cell in mitosis) for the pH3 biomarker. These analyzes were performed in three cell lines: human osteosarcoma U2OS cells, human hepatocellular carcinoma HepG2 cells and rat intestinal epithelial IEC-6 cells. Cells were exposed for 24 h to four well-characterized hazardous substances: nocodazole (aneugen), etoposide (topoisomerase inhibitor), benzo[<em>a</em>]pyrene (DNA adducts inducer), and tunicamycin (apoptosis inducer). The Benchmark Concentration (BMC) approach indicated that the sensitivity of the technics varied depending on both the chemical compounds and the tested cell line. The γH2AX foci analysis provided the higher sensitivity for clastogenic compounds. For the aneugenic compound, the global intensity and the proportion of mitotic cells showed similar sensitivity. Following tunicamycin treatment, we only detected increase in γH2AX nuclear intensity in U2OS cell model, indicating that apoptosis does not interfere with γH2AX global intensity or foci number, thereby minimizing the risk of false positive results. Finally, we observed that compared to the other methods, global intensity permitted to monitor weaker fold inductions of the biomarkers. By comparing the different quantification methods of histone modifications used as genotoxicity biomarkers, this study highlights the most suitable parameters to be used.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"906 ","pages":"Article 503878"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical risk assessment relies on in vitro genotoxicity tests. Histone modifications (γH2AX and pH3) have emerged as valuable biomarkers for genotoxicity detection. In this study, we compared three parameters (global intensity, nuclear intensity, and foci number) for the γH2AX biomarker and two parameters (global intensity and % cell in mitosis) for the pH3 biomarker. These analyzes were performed in three cell lines: human osteosarcoma U2OS cells, human hepatocellular carcinoma HepG2 cells and rat intestinal epithelial IEC-6 cells. Cells were exposed for 24 h to four well-characterized hazardous substances: nocodazole (aneugen), etoposide (topoisomerase inhibitor), benzo[a]pyrene (DNA adducts inducer), and tunicamycin (apoptosis inducer). The Benchmark Concentration (BMC) approach indicated that the sensitivity of the technics varied depending on both the chemical compounds and the tested cell line. The γH2AX foci analysis provided the higher sensitivity for clastogenic compounds. For the aneugenic compound, the global intensity and the proportion of mitotic cells showed similar sensitivity. Following tunicamycin treatment, we only detected increase in γH2AX nuclear intensity in U2OS cell model, indicating that apoptosis does not interfere with γH2AX global intensity or foci number, thereby minimizing the risk of false positive results. Finally, we observed that compared to the other methods, global intensity permitted to monitor weaker fold inductions of the biomarkers. By comparing the different quantification methods of histone modifications used as genotoxicity biomarkers, this study highlights the most suitable parameters to be used.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.