Deep learning-based chromosome segmentation and extraction: A comprehensive review of methodologies, challenges, and future directions

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ge Song , Lianzheng Su , Xinmiao Wang , Zhonghao Huang , Shian Wang , Qiuyue Fu , Peng Wang
{"title":"Deep learning-based chromosome segmentation and extraction: A comprehensive review of methodologies, challenges, and future directions","authors":"Ge Song ,&nbsp;Lianzheng Su ,&nbsp;Xinmiao Wang ,&nbsp;Zhonghao Huang ,&nbsp;Shian Wang ,&nbsp;Qiuyue Fu ,&nbsp;Peng Wang","doi":"10.1016/j.neucom.2025.131060","DOIUrl":null,"url":null,"abstract":"<div><div>Chromosome karyotyping is fundamental to cytogenetics, facilitating the diagnosis of genetic disorders and malignancies through detailed structural analysis of chromosomes. A major technical challenge is the precise segmentation and extraction of complete, non-overlapping chromosomes, especially in cases involving dense chromosome clusters or significant morphological variation. Although deep learning has achieved notable success in general image processing, its application to chromosomal analysis has only recently gained momentum, and comprehensive evaluations remain scarce. This review systematically examines recent advances in deep learning-based chromosome segmentation and extraction, summarizing prevailing methodologies and key limitations. It traces the evolution from early convolutional neural networks to encoder-decoder architectures and generative models, highlighting advances in spatial detail recovery, robustness against overlapping structures, and domain adaptation. Furthermore, the paper categorizes chromosomal segmentation into semantic, instance, and hybrid paradigms, elucidates methodological trends such as the incorporation of biological priors and the adoption of multi-task learning, and discusses practical and cognitive challenges that hinder clinical implementation. By providing a comprehensive overview and outlining future directions—including explainable AI and synthetic data augmentation—this work aims to accelerate the development of intelligent, fully automated chromosome karyotyping systems.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"652 ","pages":"Article 131060"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225017321","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Chromosome karyotyping is fundamental to cytogenetics, facilitating the diagnosis of genetic disorders and malignancies through detailed structural analysis of chromosomes. A major technical challenge is the precise segmentation and extraction of complete, non-overlapping chromosomes, especially in cases involving dense chromosome clusters or significant morphological variation. Although deep learning has achieved notable success in general image processing, its application to chromosomal analysis has only recently gained momentum, and comprehensive evaluations remain scarce. This review systematically examines recent advances in deep learning-based chromosome segmentation and extraction, summarizing prevailing methodologies and key limitations. It traces the evolution from early convolutional neural networks to encoder-decoder architectures and generative models, highlighting advances in spatial detail recovery, robustness against overlapping structures, and domain adaptation. Furthermore, the paper categorizes chromosomal segmentation into semantic, instance, and hybrid paradigms, elucidates methodological trends such as the incorporation of biological priors and the adoption of multi-task learning, and discusses practical and cognitive challenges that hinder clinical implementation. By providing a comprehensive overview and outlining future directions—including explainable AI and synthetic data augmentation—this work aims to accelerate the development of intelligent, fully automated chromosome karyotyping systems.
基于深度学习的染色体分割和提取:方法、挑战和未来方向的全面回顾
染色体核型是细胞遗传学的基础,通过染色体的详细结构分析促进遗传疾病和恶性肿瘤的诊断。一个主要的技术挑战是精确分割和提取完整的、不重叠的染色体,特别是在涉及密集染色体簇或显著形态变异的情况下。尽管深度学习在一般图像处理方面取得了显著的成功,但其在染色体分析方面的应用直到最近才获得动力,全面的评估仍然很少。本文系统地研究了基于深度学习的染色体分割和提取的最新进展,总结了流行的方法和主要局限性。它追溯了从早期卷积神经网络到编码器-解码器架构和生成模型的演变,突出了空间细节恢复、对重叠结构的鲁棒性和域适应方面的进展。此外,本文将染色体分割分为语义、实例和混合范式,阐明了方法趋势,如结合生物学先验和采用多任务学习,并讨论了阻碍临床实施的实际和认知挑战。通过提供全面的概述和概述未来的方向-包括可解释的人工智能和合成数据增强-这项工作旨在加速智能,全自动染色体核型系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信