Dual transferable knowledge interaction for source-free domain adaptation

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mengmeng Zhan , Zongqian Wu , Jiaying Yang , Lin Peng , Jialie Shen , Xiaofeng Zhu
{"title":"Dual transferable knowledge interaction for source-free domain adaptation","authors":"Mengmeng Zhan ,&nbsp;Zongqian Wu ,&nbsp;Jiaying Yang ,&nbsp;Lin Peng ,&nbsp;Jialie Shen ,&nbsp;Xiaofeng Zhu","doi":"10.1016/j.ipm.2025.104302","DOIUrl":null,"url":null,"abstract":"<div><div>Source-free domain adaptation (SFDA) aims to adapt a pre-trained model to an unlabeled target domain without requiring access to source data, addressing privacy and security concerns in real-world applications. While vision-language models like CLIP have shown promise for SFDA, existing approaches primarily leverage CLIP’s final predictions for adaptation, overlooking its feature-space discriminative insights. This limitation hinders knowledge transfer effectiveness. To bridge this gap, we propose Dual Transferable Knowledge Interaction (DTKI), a novel framework that integrates local feature structures from CLIP with inter-class relationships from the source model to guide adaptation. Specifically, DTKI constructs a nearest-neighbor graph to capture local target domain structures and enhances CLIP’s textual representations using inter-class relationships from the source model’s classifier. Our theoretical analysis demonstrates that these two complementary knowledge transfer mechanisms significantly reduce classification errors. Extensive experiments on four public SFDA benchmarks validate DTKI’s superiority, achieving state-of-the-art performance across multiple domain adaptation scenarios, including partial-set, closed-set, and open-set SFDA.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104302"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002432","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Source-free domain adaptation (SFDA) aims to adapt a pre-trained model to an unlabeled target domain without requiring access to source data, addressing privacy and security concerns in real-world applications. While vision-language models like CLIP have shown promise for SFDA, existing approaches primarily leverage CLIP’s final predictions for adaptation, overlooking its feature-space discriminative insights. This limitation hinders knowledge transfer effectiveness. To bridge this gap, we propose Dual Transferable Knowledge Interaction (DTKI), a novel framework that integrates local feature structures from CLIP with inter-class relationships from the source model to guide adaptation. Specifically, DTKI constructs a nearest-neighbor graph to capture local target domain structures and enhances CLIP’s textual representations using inter-class relationships from the source model’s classifier. Our theoretical analysis demonstrates that these two complementary knowledge transfer mechanisms significantly reduce classification errors. Extensive experiments on four public SFDA benchmarks validate DTKI’s superiority, achieving state-of-the-art performance across multiple domain adaptation scenarios, including partial-set, closed-set, and open-set SFDA.
面向无源领域自适应的双重可转移知识交互
无源域适应(source -free domain adaptation, SFDA)旨在使预训练的模型适应未标记的目标域,而不需要访问源数据,从而解决现实应用中的隐私和安全问题。虽然像CLIP这样的视觉语言模型已经显示出对SFDA的希望,但现有的方法主要是利用CLIP的最终预测来适应,而忽略了它的特征空间判别性见解。这种限制阻碍了知识转移的有效性。为了弥补这一差距,我们提出了双重可转移知识交互(DTKI),这是一个将CLIP的局部特征结构与源模型的类间关系集成在一起的新框架,以指导自适应。具体来说,DTKI构建了一个最近邻图来捕获局部目标域结构,并使用来自源模型分类器的类间关系来增强CLIP的文本表示。我们的理论分析表明,这两种互补的知识转移机制显著降低了分类错误。在四个公共SFDA基准上进行的大量实验验证了DTKI的优势,在多个领域自适应场景(包括部分集、闭集和开集SFDA)中实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信