Logarithmic prismatic cohomology II

IF 1.5 1区 数学 Q1 MATHEMATICS
Teruhisa Koshikawa , Zijian Yao
{"title":"Logarithmic prismatic cohomology II","authors":"Teruhisa Koshikawa ,&nbsp;Zijian Yao","doi":"10.1016/j.aim.2025.110446","DOIUrl":null,"url":null,"abstract":"<div><div>We continue to study the logarithmic prismatic cohomology defined by the first author, and complete the proof of the de Rham comparison and étale comparison generalizing those of Bhatt and Scholze. We prove these comparisons for a derived version of logarithmic prismatic cohomology, and, along the way, we construct a suitable Nygaard filtration and explain a relation between <em>F</em>-crystals and <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-local systems in the logarithmic setting.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110446"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003445","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue to study the logarithmic prismatic cohomology defined by the first author, and complete the proof of the de Rham comparison and étale comparison generalizing those of Bhatt and Scholze. We prove these comparisons for a derived version of logarithmic prismatic cohomology, and, along the way, we construct a suitable Nygaard filtration and explain a relation between F-crystals and Zp-local systems in the logarithmic setting.
对数移动上同调II
我们继续研究第一作者定义的对数移动上同,并完成了推广Bhatt和Scholze的de Rham比较和samtale比较的证明。我们在对数棱柱上同调的推导版本中证明了这些比较,同时,我们构造了一个合适的Nygaard滤波,并解释了对数设置下f晶体和zp局部系统之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信