Yijiang Huang , Ziqi Wang , Yi-Hsiu Hung , Chenming Jiang , Aurèle L. Gheyselinck , Stelian Coros
{"title":"Computational design and fabrication of reusable multi-tangent bar structures","authors":"Yijiang Huang , Ziqi Wang , Yi-Hsiu Hung , Chenming Jiang , Aurèle L. Gheyselinck , Stelian Coros","doi":"10.1016/j.cad.2025.103907","DOIUrl":null,"url":null,"abstract":"<div><div>Temporary bar structures made of reusable standardized components are widely used in construction, events, and exhibitions. They are economical, easy to assemble, and can be disassembled and reused in various structural arrangements for various purposes. However, existing reusable temporary structures are either limited to modular yet repetitive designs or require bespoke components, which restricts their reuse potential. Instead of designing bespoke kit of parts for limited reuse, this paper investigates how to design and build diverse freeform structures from one homogeneous kit of parts. We propose a computational framework to generate multi-tangent bar structures, a widely used jointing system, which allows bars to be joined at any point along their length with standard connectors. We present a mathematical formulation and a numerical scheme to optimize the bar spatial positions and contact assignment simultaneously, while ensuring that the constraints of tangency, collision, joint connectivity, and bar length are satisfied. Together with simulated case studies, we present two physical prototypes that reuse the same kit of parts using an augmented reality-guided assembly workflow.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"188 ","pages":"Article 103907"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448525000697","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Temporary bar structures made of reusable standardized components are widely used in construction, events, and exhibitions. They are economical, easy to assemble, and can be disassembled and reused in various structural arrangements for various purposes. However, existing reusable temporary structures are either limited to modular yet repetitive designs or require bespoke components, which restricts their reuse potential. Instead of designing bespoke kit of parts for limited reuse, this paper investigates how to design and build diverse freeform structures from one homogeneous kit of parts. We propose a computational framework to generate multi-tangent bar structures, a widely used jointing system, which allows bars to be joined at any point along their length with standard connectors. We present a mathematical formulation and a numerical scheme to optimize the bar spatial positions and contact assignment simultaneously, while ensuring that the constraints of tangency, collision, joint connectivity, and bar length are satisfied. Together with simulated case studies, we present two physical prototypes that reuse the same kit of parts using an augmented reality-guided assembly workflow.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.