Dynamic multi-graph spatio-temporal learning for citywide traffic flow prediction in transportation systems

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ahmad Ali, H.M. Yasir Naeem, Amin Sharafian, Li Qiu, Zongze Wu, Xiaoshan Bai
{"title":"Dynamic multi-graph spatio-temporal learning for citywide traffic flow prediction in transportation systems","authors":"Ahmad Ali,&nbsp;H.M. Yasir Naeem,&nbsp;Amin Sharafian,&nbsp;Li Qiu,&nbsp;Zongze Wu,&nbsp;Xiaoshan Bai","doi":"10.1016/j.chaos.2025.116898","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity and dynamic nature of urban traffic systems necessitate efficient resource management for accurate traffic flow forecasting, enabling real-time adaptation and optimized resource allocation. Recent advancements in multi-graph spatio-temporal graph neural networks (STGNN) have demonstrated their capability to capture spatio-temporal correlations at multiple scales, significantly improving prediction accuracy. However, a persistent challenge lies in effectively aggregating neighborhood information for node representation learning, particularly in scenarios with sparse connectivity. To address this limitation, we propose an Attention-based Dynamic Multi-Graph Module (ADMGM) for traffic prediction, integrating Federated Learning (FL) within a Multi-Access Edge Computing (MEC) architecture. Our approach incorporates an Adaptive Enhancement Module (AEM) deployed at the edge, pre-trained to process high-volume, heterogeneous data from IoT devices. The ADMGM model comprises four key components: closeness, daily, weekly, and an external branch, each contributing to a comprehensive spatio-temporal representation of traffic dynamics. The AEM leverages long-term historical data at each node, capturing inter-node dependencies to generate enriched feature representations while enhancing the model ability to generalize across diverse traffic patterns. Furthermore, we introduce a clustered feature correlation graph to uncover latent relationships within long-term time series data, thereby strengthening spatio-temporal modeling. Extensive experiments on the TaxiBJ and BikeNYC datasets demonstrate that our model significantly reduces prediction errors, achieving state-of-the-art performance in traffic forecasting.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116898"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009117","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity and dynamic nature of urban traffic systems necessitate efficient resource management for accurate traffic flow forecasting, enabling real-time adaptation and optimized resource allocation. Recent advancements in multi-graph spatio-temporal graph neural networks (STGNN) have demonstrated their capability to capture spatio-temporal correlations at multiple scales, significantly improving prediction accuracy. However, a persistent challenge lies in effectively aggregating neighborhood information for node representation learning, particularly in scenarios with sparse connectivity. To address this limitation, we propose an Attention-based Dynamic Multi-Graph Module (ADMGM) for traffic prediction, integrating Federated Learning (FL) within a Multi-Access Edge Computing (MEC) architecture. Our approach incorporates an Adaptive Enhancement Module (AEM) deployed at the edge, pre-trained to process high-volume, heterogeneous data from IoT devices. The ADMGM model comprises four key components: closeness, daily, weekly, and an external branch, each contributing to a comprehensive spatio-temporal representation of traffic dynamics. The AEM leverages long-term historical data at each node, capturing inter-node dependencies to generate enriched feature representations while enhancing the model ability to generalize across diverse traffic patterns. Furthermore, we introduce a clustered feature correlation graph to uncover latent relationships within long-term time series data, thereby strengthening spatio-temporal modeling. Extensive experiments on the TaxiBJ and BikeNYC datasets demonstrate that our model significantly reduces prediction errors, achieving state-of-the-art performance in traffic forecasting.
交通系统中城市交通流预测的动态多图时空学习
城市交通系统的复杂性和动态性要求有效的资源管理,以实现准确的交通流量预测,实现实时适应和优化资源分配。近年来,多图时空图神经网络(STGNN)已经证明了其在多尺度下捕获时空相关性的能力,显著提高了预测精度。然而,一个持久的挑战在于有效地聚集节点表示学习的邻域信息,特别是在具有稀疏连接的场景中。为了解决这一限制,我们提出了一种基于注意力的动态多图模块(ADMGM)用于流量预测,将联邦学习(FL)集成在多访问边缘计算(MEC)架构中。我们的方法结合了一个部署在边缘的自适应增强模块(AEM),预先训练以处理来自物联网设备的大容量异构数据。ADMGM模型包括四个关键组成部分:距离、每日、每周和外部分支,每个部分都有助于全面的交通动态时空表征。AEM利用每个节点的长期历史数据,捕获节点间的依赖关系,以生成丰富的特征表示,同时增强模型跨不同流量模式进行泛化的能力。此外,我们引入聚类特征相关图来揭示长期时间序列数据中的潜在关系,从而加强时空建模。在TaxiBJ和bikenc数据集上的大量实验表明,我们的模型显著降低了预测误差,实现了最先进的交通预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信