Multi-scale dynamics of a singularly perturbed piecewise-smooth predator–prey model with weak predator interference

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiao Wu, Mengyuan Shi, Feng Xie
{"title":"Multi-scale dynamics of a singularly perturbed piecewise-smooth predator–prey model with weak predator interference","authors":"Xiao Wu,&nbsp;Mengyuan Shi,&nbsp;Feng Xie","doi":"10.1016/j.chaos.2025.116895","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the dynamics of a piecewise-smooth predator–prey model with weak predator interference. By non-dimensional transformation, the model can be rewritten as a regular-singular system with a regularly perturbed system for <span><math><mrow><mi>u</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and a singularly perturbed system for <span><math><mrow><mi>u</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Based on the analysis, the regular-singular system has two saddle boundary equilibriums and at most three positive equilibriums. When the positive equilibrium with <span><math><mrow><mi>u</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> is a stable focus, the system undergoes a saddle–node bifurcation and a boundary equilibrium bifurcation. Furthermore, as the parameters cross the bifurcation curves, the system has a small-amplitude hyperbolically unstable limit cycle, which is surrounded by a stable relaxation oscillation cycle, a homoclinic cycle and a heteroclinic cycle, respectively. Finally, we provide the phase portraits to illustrate our theoretical results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116895"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009087","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the dynamics of a piecewise-smooth predator–prey model with weak predator interference. By non-dimensional transformation, the model can be rewritten as a regular-singular system with a regularly perturbed system for u<1 and a singularly perturbed system for u1. Based on the analysis, the regular-singular system has two saddle boundary equilibriums and at most three positive equilibriums. When the positive equilibrium with u<1 is a stable focus, the system undergoes a saddle–node bifurcation and a boundary equilibrium bifurcation. Furthermore, as the parameters cross the bifurcation curves, the system has a small-amplitude hyperbolically unstable limit cycle, which is surrounded by a stable relaxation oscillation cycle, a homoclinic cycle and a heteroclinic cycle, respectively. Finally, we provide the phase portraits to illustrate our theoretical results.
弱捕食者干扰下奇异摄动分段平滑捕食者-猎物模型的多尺度动力学
本文研究了具有弱捕食者干扰的分段平滑捕食者-猎物模型的动力学问题。通过无量纲变换,可以将模型改写为正则-奇异系统,其中对于u≥1为正则摄动系统,对于u≥1为奇异摄动系统。基于分析,正则奇异系统有两个鞍边平衡点和最多三个正平衡点。当带u<;1的正平衡为稳定焦点时,系统发生鞍节点分岔和边界平衡分岔。此外,当参数穿过分岔曲线时,系统具有一个小振幅双曲不稳定极限环,其周围分别有一个稳定的松弛振荡环、一个同斜环和一个异斜环。最后,我们提供了相图来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信