Hodge theory on the Harmonic Gasket and other fractals

IF 1.3 2区 数学 Q1 MATHEMATICS
Ugo Bessi
{"title":"Hodge theory on the Harmonic Gasket and other fractals","authors":"Ugo Bessi","doi":"10.1016/j.na.2025.113892","DOIUrl":null,"url":null,"abstract":"<div><div>S. Kusuoka has proven that, on many fractals <span><math><mrow><mi>G</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, it is possible to build a natural bilinear form on the vector space of Borel fields of one-forms on <span><math><mi>G</mi></math></span>. A variant of this construction yields a bilinear form on Borel fields of <span><math><mi>q</mi></math></span>-forms; it is tempting to ask (and several authors have done it) whether some features of Hodge theory survive in this setting. In this paper we define a weak version of the codifferential on fractals and we show that, for one-forms on the Harmonic Sierpinski Gasket, a Hodge decomposition theorem holds. As a further example, we calculate the codifferential of 2-forms and 1-forms on a fractal of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> which is the product of the harmonic Sierpinski gasket with the interval <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113892"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001464","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

S. Kusuoka has proven that, on many fractals GRd, it is possible to build a natural bilinear form on the vector space of Borel fields of one-forms on G. A variant of this construction yields a bilinear form on Borel fields of q-forms; it is tempting to ask (and several authors have done it) whether some features of Hodge theory survive in this setting. In this paper we define a weak version of the codifferential on fractals and we show that, for one-forms on the Harmonic Sierpinski Gasket, a Hodge decomposition theorem holds. As a further example, we calculate the codifferential of 2-forms and 1-forms on a fractal of R3 which is the product of the harmonic Sierpinski gasket with the interval [0,1].
调和垫片和其他分形的霍奇理论
S. Kusuoka已经证明,在许多分形G∧Rd上,可以在G上单形Borel域的向量空间上构造自然双线性形式。这种构造的一个变体在q形Borel域上产生双线性形式;人们不禁要问(有几位作者已经问过了),霍奇理论的某些特征在这种情况下是否依然存在。本文定义了分形上协微分的一个弱版本,并证明了对于调和Sierpinski垫片上的一种形式,一个Hodge分解定理成立。作为进一步的例子,我们计算了2-形式和1-形式在R3分形上的协微分,该分形是调和Sierpinski垫片与区间[0,1]的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信