Sulaiman O. Afolabi, Leila Gheisi, Jing Shan, Lucy Q. Shen, Mengyu Wang, Min Shi
{"title":"Equity-enhanced glaucoma progression prediction from OCT with knowledge distillation","authors":"Sulaiman O. Afolabi, Leila Gheisi, Jing Shan, Lucy Q. Shen, Mengyu Wang, Min Shi","doi":"10.1038/s41746-025-01884-9","DOIUrl":null,"url":null,"abstract":"<p>Glaucoma is a progressive disease that can lead to permanent vision loss, making progression prediction vital for guiding effective treatment. Deep learning aids progression prediction but may yield unequal outcomes across demographic groups. We proposed a model called FairDist, which utilized baseline optical coherence tomography scans to predict glaucoma progression. An equity-aware EfficientNet was trained for glaucoma detection, which was then adapted for progression prediction with knowledge distillation. Model accuracy was measured by the AUC, Sensitivity, Specificity, and equity was assessed using equity-scaled AUC, which adjusts AUC by accounting for subgroup disparities. The mean deviation, fast progression, and total deviation pointwise progression were explored in this work. For both progression types, FairDist achieved the highest AUC and equity-scaled AUC for gender and racial groups, compared to methods with and without unfairness mitigation strategies. FairDist can be generalized to other disease progression prediction tasks to potentially achieve improved performance and fairness.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"47 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01884-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma is a progressive disease that can lead to permanent vision loss, making progression prediction vital for guiding effective treatment. Deep learning aids progression prediction but may yield unequal outcomes across demographic groups. We proposed a model called FairDist, which utilized baseline optical coherence tomography scans to predict glaucoma progression. An equity-aware EfficientNet was trained for glaucoma detection, which was then adapted for progression prediction with knowledge distillation. Model accuracy was measured by the AUC, Sensitivity, Specificity, and equity was assessed using equity-scaled AUC, which adjusts AUC by accounting for subgroup disparities. The mean deviation, fast progression, and total deviation pointwise progression were explored in this work. For both progression types, FairDist achieved the highest AUC and equity-scaled AUC for gender and racial groups, compared to methods with and without unfairness mitigation strategies. FairDist can be generalized to other disease progression prediction tasks to potentially achieve improved performance and fairness.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.