Sonja M. Biebl, Robert C. Richter, Markus Ströbele, Ivana Fleischer, Holger F. Bettinger
{"title":"High energy density dihydroazaborinine dyads and triad for molecular solar thermal energy storage","authors":"Sonja M. Biebl, Robert C. Richter, Markus Ströbele, Ivana Fleischer, Holger F. Bettinger","doi":"10.1039/d5sc03159a","DOIUrl":null,"url":null,"abstract":"The reversible photoisomerization of 1,2-dihydro-1,2-azaborinines (BN benzenes) to their Dewar isomers (2-aza-3-borabicyclo[2.2.0]hex-5-enes) provides a promising platform for molecular solar thermal (MOST) energy conversion, storage, and release. We examine how energy density can be optimized by bundling multiple dihydroazaborinine units into a single molecule and explore how properties change depending on the connectivity of these units. Remarkably high molar energy densities of up to 644 kJ mol<small><sup>−1</sup></small> were obtained, as well as a significant decrease in the half-life of the storage state in the order of <em>ortho</em> > <em>meta</em> > <em>para</em>. Moreover, the absorption is shifted from the UV-C of the parent 1,2-dihydro-1,2-azaborinine into the UV-A region. The investigated dyads and triades meet several criteria for an ideal molecular solar thermal storage material.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"21 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc03159a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reversible photoisomerization of 1,2-dihydro-1,2-azaborinines (BN benzenes) to their Dewar isomers (2-aza-3-borabicyclo[2.2.0]hex-5-enes) provides a promising platform for molecular solar thermal (MOST) energy conversion, storage, and release. We examine how energy density can be optimized by bundling multiple dihydroazaborinine units into a single molecule and explore how properties change depending on the connectivity of these units. Remarkably high molar energy densities of up to 644 kJ mol−1 were obtained, as well as a significant decrease in the half-life of the storage state in the order of ortho > meta > para. Moreover, the absorption is shifted from the UV-C of the parent 1,2-dihydro-1,2-azaborinine into the UV-A region. The investigated dyads and triades meet several criteria for an ideal molecular solar thermal storage material.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.