{"title":"MMF-MCP: A Deep Transfer Learning Model Based on Multimodal Information Fusion for Molecular Feature Extraction and Carcinogenicity Prediction.","authors":"Liwei Liu,Qi Zhang,Yuxiao Wei","doi":"10.1021/acs.jcim.5c01362","DOIUrl":null,"url":null,"abstract":"Molecular carcinogenicity is a crucial factor in the development of cancer, and accurate prediction of it is vital for cancer prevention, treatment, and drug development. In recent years, deep learning has been applied to predict molecular carcinogenicity, but due to limitations in data quality and feature richness, these methods still need improvement in terms of accuracy, robustness, and interpretability. In this article, we propose a deep transfer learning model based on multimodal information fusion, called MMF-MCP, for molecular feature extraction and carcinogenicity prediction. We extract molecular graph features and fingerprint features using graph attention networks and convolutional neural networks, respectively, and process molecular images through a deep residual network, SE-ResNet18, equipped with a squeeze-and-excitation module. To more effectively utilize limited carcinogenicity data and enhance the model's predictive performance and generalization ability, we further apply a transfer learning strategy by pretraining the model on a molecular mutagenicity data set and then fine-tuning it on the carcinogenicity data set, enabling knowledge transfer and significant improvement in model performance. MMF-MCP achieves average ACC, AUC, SE, and SP scores of 0.8452, 0.8513, 0.8571, and 0.8333 on benchmark data sets for molecular carcinogenicity, significantly outperforming state-of-the-art molecular carcinogenicity prediction methods. Additionally, the visualization results of MMF-MCP on molecular images demonstrate its strong interpretability, providing significant assistance in visually observing and understanding the critical structures and features of molecular carcinogenicity. The source code for MMF-MCP is available at https://github.com/liuliwei1980/MCP.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01362","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular carcinogenicity is a crucial factor in the development of cancer, and accurate prediction of it is vital for cancer prevention, treatment, and drug development. In recent years, deep learning has been applied to predict molecular carcinogenicity, but due to limitations in data quality and feature richness, these methods still need improvement in terms of accuracy, robustness, and interpretability. In this article, we propose a deep transfer learning model based on multimodal information fusion, called MMF-MCP, for molecular feature extraction and carcinogenicity prediction. We extract molecular graph features and fingerprint features using graph attention networks and convolutional neural networks, respectively, and process molecular images through a deep residual network, SE-ResNet18, equipped with a squeeze-and-excitation module. To more effectively utilize limited carcinogenicity data and enhance the model's predictive performance and generalization ability, we further apply a transfer learning strategy by pretraining the model on a molecular mutagenicity data set and then fine-tuning it on the carcinogenicity data set, enabling knowledge transfer and significant improvement in model performance. MMF-MCP achieves average ACC, AUC, SE, and SP scores of 0.8452, 0.8513, 0.8571, and 0.8333 on benchmark data sets for molecular carcinogenicity, significantly outperforming state-of-the-art molecular carcinogenicity prediction methods. Additionally, the visualization results of MMF-MCP on molecular images demonstrate its strong interpretability, providing significant assistance in visually observing and understanding the critical structures and features of molecular carcinogenicity. The source code for MMF-MCP is available at https://github.com/liuliwei1980/MCP.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.