Duo Xu,Yanyun Gao,Shengchen Liu,Shiyuan Yin,Tong Hu,Haibin Deng,Tuo Zhang,Balazs Hegedüs,Thomas M Marti,Patrick Dorn,Shun-Qing Liang,Ralph A Schmid,Ren-Wang Peng,Yongqian Shu
{"title":"De novo pyrimidine synthesis is a collateral metabolic vulnerability in NF2-deficient mesothelioma.","authors":"Duo Xu,Yanyun Gao,Shengchen Liu,Shiyuan Yin,Tong Hu,Haibin Deng,Tuo Zhang,Balazs Hegedüs,Thomas M Marti,Patrick Dorn,Shun-Qing Liang,Ralph A Schmid,Ren-Wang Peng,Yongqian Shu","doi":"10.1038/s44321-025-00278-4","DOIUrl":null,"url":null,"abstract":"Pleural mesothelioma (PM) is one of the deadliest cancers, with limited therapeutic options due to its therapeutically intractable genome, which is characterized by the functional inactivation of tumor suppressor genes (TSGs) and high tumor heterogeneity, including diverse metabolic adaptations. However, the molecular mechanisms underlying these metabolic alterations remain poorly understood, particularly how TSG inactivation rewires tumor metabolism to drive tumorigenesis and create metabolic dependencies. Through integrated multi-omics analysis, we identify for the first time that NF2 loss of function defines a distinct PM subtype characterized by enhanced de novo pyrimidine synthesis, which NF2-deficient PM cells are critically dependent on for sustained proliferation in vitro and in vivo. Mechanistically, NF2 loss activates YAP, a downstream proto-oncogenic transcriptional coactivator in the Hippo signalling pathway, which in turn upregulates CAD and DHODH, key enzymes in the de novo pyrimidine biosynthesis pathway. Our findings provide novel insights into metabolic reprogramming in PM, revealing de novo pyrimidine synthesis as a synthetic lethal vulnerability in NF2-deficient tumors. This work highlights a potential therapeutic strategy for targeting NF2-deficient mesothelioma through metabolic intervention.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":"34 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00278-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pleural mesothelioma (PM) is one of the deadliest cancers, with limited therapeutic options due to its therapeutically intractable genome, which is characterized by the functional inactivation of tumor suppressor genes (TSGs) and high tumor heterogeneity, including diverse metabolic adaptations. However, the molecular mechanisms underlying these metabolic alterations remain poorly understood, particularly how TSG inactivation rewires tumor metabolism to drive tumorigenesis and create metabolic dependencies. Through integrated multi-omics analysis, we identify for the first time that NF2 loss of function defines a distinct PM subtype characterized by enhanced de novo pyrimidine synthesis, which NF2-deficient PM cells are critically dependent on for sustained proliferation in vitro and in vivo. Mechanistically, NF2 loss activates YAP, a downstream proto-oncogenic transcriptional coactivator in the Hippo signalling pathway, which in turn upregulates CAD and DHODH, key enzymes in the de novo pyrimidine biosynthesis pathway. Our findings provide novel insights into metabolic reprogramming in PM, revealing de novo pyrimidine synthesis as a synthetic lethal vulnerability in NF2-deficient tumors. This work highlights a potential therapeutic strategy for targeting NF2-deficient mesothelioma through metabolic intervention.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)