Jasmin M Kneuer,Marion Müller,Stephan Erbe,Karoline E Kokot,Sebastian Rosch,Irina Müller-Kozarez,Sophie Charlotte Schrö,Christina Maeder,Sarah Felicitas Heitkamp,Susanne Gaul,Stephan von Haehling,Anke Tönjes,Matthias Blüher,Philipp Lurz,Rolf Wachter,Anna Klinke,Ulrich Laufs,Jes-Niels Boeckel
{"title":"Circulating Immune Cell Signature Analysis in HFpEF Across Species.","authors":"Jasmin M Kneuer,Marion Müller,Stephan Erbe,Karoline E Kokot,Sebastian Rosch,Irina Müller-Kozarez,Sophie Charlotte Schrö,Christina Maeder,Sarah Felicitas Heitkamp,Susanne Gaul,Stephan von Haehling,Anke Tönjes,Matthias Blüher,Philipp Lurz,Rolf Wachter,Anna Klinke,Ulrich Laufs,Jes-Niels Boeckel","doi":"10.1161/circresaha.125.326249","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nHeart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical picture that is closely related to extracardiac comorbidities such as obesity, hypertension, and diabetes and is associated with chronic, low-grade systemic inflammation. Previous studies on myocardial biopsies of patients with HFpEF showed intramyocardial inflammatory activity, suggesting that the inflammatory processes in HFpEF are predominantly systemic and exhibit compartment-specific patterns.\r\n\r\nMETHODS\r\nWe performed single-cell RNA sequencing of peripheral blood mononuclear cells of patients with HFpEF (n=6), heart failure with reduced ejection fraction patients (n=8), and healthy controls (n=7), taking obesity status into account. For validation, bulk RNA sequencing was performed on whole blood samples. In parallel, the systemic immune cell response was investigated in an HFpEF mouse model (induced by a high-fat diet plus L-NAME), with one group additionally administered the anti-inflammatory agent nitro-oleic acid.\r\n\r\nRESULTS\r\nAnalysis of human peripheral blood mononuclear cells revealed an HFpEF-specific inflammatory fingerprint, which manifested in obesity-related increased expression of cytokine signaling genes (eg, CCL2 and TNF) and obesity-independent increases in mitochondrial-associated activity. In the mouse model, HFpEF animals showed a comparable increase in inflammatory markers, with treatment with nitro-oleic acid leading to a partial normalization of immunologic signatures and a significant improvement in diastolic function.\r\n\r\nCONCLUSIONS\r\nOur results demonstrate that the immune cells of patients with HFpEF are characterized by a distinct transcriptional immune signature that differs from that of patients with heart failure with reduced ejection fraction analyzed in this study. The conserved immunologic signatures between the human and murine data sets analyzed here, and the beneficial effect of nitro-oleic acid in the preclinical model induced by high-fat diet and L-NAME, provide translational insights and generate hypotheses for personalized interventions in HFpEF.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"52 1","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.125.326249","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical picture that is closely related to extracardiac comorbidities such as obesity, hypertension, and diabetes and is associated with chronic, low-grade systemic inflammation. Previous studies on myocardial biopsies of patients with HFpEF showed intramyocardial inflammatory activity, suggesting that the inflammatory processes in HFpEF are predominantly systemic and exhibit compartment-specific patterns.
METHODS
We performed single-cell RNA sequencing of peripheral blood mononuclear cells of patients with HFpEF (n=6), heart failure with reduced ejection fraction patients (n=8), and healthy controls (n=7), taking obesity status into account. For validation, bulk RNA sequencing was performed on whole blood samples. In parallel, the systemic immune cell response was investigated in an HFpEF mouse model (induced by a high-fat diet plus L-NAME), with one group additionally administered the anti-inflammatory agent nitro-oleic acid.
RESULTS
Analysis of human peripheral blood mononuclear cells revealed an HFpEF-specific inflammatory fingerprint, which manifested in obesity-related increased expression of cytokine signaling genes (eg, CCL2 and TNF) and obesity-independent increases in mitochondrial-associated activity. In the mouse model, HFpEF animals showed a comparable increase in inflammatory markers, with treatment with nitro-oleic acid leading to a partial normalization of immunologic signatures and a significant improvement in diastolic function.
CONCLUSIONS
Our results demonstrate that the immune cells of patients with HFpEF are characterized by a distinct transcriptional immune signature that differs from that of patients with heart failure with reduced ejection fraction analyzed in this study. The conserved immunologic signatures between the human and murine data sets analyzed here, and the beneficial effect of nitro-oleic acid in the preclinical model induced by high-fat diet and L-NAME, provide translational insights and generate hypotheses for personalized interventions in HFpEF.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.