Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data.

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Ashkan Pirmani,Edward De Brouwer,Ádám Arany,Martijn Oldenhof,Antoine Passemiers,Axel Faes,Tomas Kalincik,Serkan Ozakbas,Riadh Gouider,Barbara Willekens,Dana Horakova,Eva Kubala Havrdova,Francesco Patti,Alexandre Prat,Alessandra Lugaresi,Valentina Tomassini,Pierre Grammond,Elisabetta Cartechini,Izanne Roos,Cavit Boz,Raed Alroughani,Maria Pia Amato,Katherine Buzzard,Jeannette Lechner-Scott,Joana Guimarães,Claudio Solaro,Oliver Gerlach,Aysun Soysal,Jens Kuhle,Jose Luis Sanchez-Menoyo,Daniele Spitaleri,Tunde Csepany,Bart Van Wijmeersch,Radek Ampapa,Julie Prevost,Samia J Khoury,Vincent Van Pesch,Nevin John,Davide Maimone,Bianca Weinstock-Guttman,Guy Laureys,Pamela McCombe,Yolanda Blanco,Ayse Altintas,Abdullah Al-Asmi,Justin Garber,Anneke Van der Walt,Helmut Butzkueven,Koen de Gans,Csilla Rozsa,Bruce Taylor,Talal Al-Harbi,Attila Sas,Cecilia Rajda,Orla Gray,Danny Decoo,William M Carroll,Allan G Kermode,Marzena Fabis-Pedrini,Deborah Mason,Angel Perez-Sempere,Mihaela Simu,Neil Shuey,Bhim Singhal,Marija Cauchi,Todd A Hardy,Sudarshini Ramanathan,Patrice Lalive,Carmen-Adella Sirbu,Stella Hughes,Tamara Castillo Trivino,Liesbet M Peeters,Yves Moreau
{"title":"Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data.","authors":"Ashkan Pirmani,Edward De Brouwer,Ádám Arany,Martijn Oldenhof,Antoine Passemiers,Axel Faes,Tomas Kalincik,Serkan Ozakbas,Riadh Gouider,Barbara Willekens,Dana Horakova,Eva Kubala Havrdova,Francesco Patti,Alexandre Prat,Alessandra Lugaresi,Valentina Tomassini,Pierre Grammond,Elisabetta Cartechini,Izanne Roos,Cavit Boz,Raed Alroughani,Maria Pia Amato,Katherine Buzzard,Jeannette Lechner-Scott,Joana Guimarães,Claudio Solaro,Oliver Gerlach,Aysun Soysal,Jens Kuhle,Jose Luis Sanchez-Menoyo,Daniele Spitaleri,Tunde Csepany,Bart Van Wijmeersch,Radek Ampapa,Julie Prevost,Samia J Khoury,Vincent Van Pesch,Nevin John,Davide Maimone,Bianca Weinstock-Guttman,Guy Laureys,Pamela McCombe,Yolanda Blanco,Ayse Altintas,Abdullah Al-Asmi,Justin Garber,Anneke Van der Walt,Helmut Butzkueven,Koen de Gans,Csilla Rozsa,Bruce Taylor,Talal Al-Harbi,Attila Sas,Cecilia Rajda,Orla Gray,Danny Decoo,William M Carroll,Allan G Kermode,Marzena Fabis-Pedrini,Deborah Mason,Angel Perez-Sempere,Mihaela Simu,Neil Shuey,Bhim Singhal,Marija Cauchi,Todd A Hardy,Sudarshini Ramanathan,Patrice Lalive,Carmen-Adella Sirbu,Stella Hughes,Tamara Castillo Trivino,Liesbet M Peeters,Yves Moreau","doi":"10.1038/s41746-025-01788-8","DOIUrl":null,"url":null,"abstract":"Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 ± 0.0019 and 0.8384 ± 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"114 1","pages":"478"},"PeriodicalIF":15.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01788-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 ± 0.0019 and 0.8384 ± 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond.
使用真实世界常规临床数据预测多发性硬化症残疾进展的个性化联合学习。
早期预测多发性硬化症(MS)的残疾进展仍然具有挑战性,尽管它对治疗决策至关重要。我们首次对个性化联邦学习(PFL)用于2年MS残疾进展预测的系统评估,利用来自26,000多名患者的多中心真实数据。虽然传统的联邦学习(FL)支持隐私感知的协作建模,但它仍然容易受到机构数据异质性的影响。PFL通过使共享模型适应本地数据分布而不损害隐私来克服这一挑战。我们评估了两种个性化策略:一种具有选择性参数共享的新型AdaptiveDualBranchNet架构,以及对全局模型进行个性化微调,以集中式和特定于客户端的方法为基准。与个性化方法相比,基线FL的表现较差,而个性化方法显著提高了性能,个性化FedProx和FedAVG的ROC-AUC评分分别为0.8398±0.0019和0.8384±0.0014。这些发现确立了个性化对于可扩展的、隐私意识的临床预测模型至关重要,并强调了其在MS及其他疾病早期干预策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信