Post-COVID-19 Femoral Head Osteonecrosis Exhibits Mast Cell Clusters, Fibrosis, and Vascular Thrombosis: Key Pathological Mechanisms in Long COVID-19 Bone Degeneration.
Asya Kuliyeva, Natalia Serejnikova, Gulnara Eshmotova, Yulya Teslya, Anastasia Ivina, Alexey Zarov, Michael Panin, Alexey Prizov, Vera Lyalina, Dmitry Shestakov, Alexey Fayzullin, Peter Timashev, Alexey Volkov
{"title":"Post-COVID-19 Femoral Head Osteonecrosis Exhibits Mast Cell Clusters, Fibrosis, and Vascular Thrombosis: Key Pathological Mechanisms in Long COVID-19 Bone Degeneration.","authors":"Asya Kuliyeva, Natalia Serejnikova, Gulnara Eshmotova, Yulya Teslya, Anastasia Ivina, Alexey Zarov, Michael Panin, Alexey Prizov, Vera Lyalina, Dmitry Shestakov, Alexey Fayzullin, Peter Timashev, Alexey Volkov","doi":"10.3390/pathophysiology32030036","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Osteonecrosis of the femoral head (ONFH) is a common condition in hip surgery, which is characterized by the death of bone cells due to disruption of the blood supply and ultimately irreversible destruction of the hip joint. As a result of the COVID-19 pandemic, a significant increase in the incidence of ONFH has been identified. To better understand the pathogenesis of ONFH in the context of COVID-19, our research aimed to determine pathomorphological changes in articular tissues specific to post-COVID-19 ONFH. <b>Methods:</b> Using morphological, morphometric, and statistical methods, the femoral heads after hip arthroplasty were retrospectively studied in patients with post-COVID-19 ONFH (<i>n</i> = 41) compared to a non-COVID-19 group of patients (<i>n</i> = 47). <b>Results:</b> Our results revealed that the key morphofunctional biomarkers of post-COVID-19 ONFH were clusters of mast cells, extensive areas of fibrosis, numerous arterial and venous thrombi, and giant cell granulomas. The potential relationship of those morphological features with the action of the SARS-CoV-2 coronavirus was discussed. <b>Conclusions:</b> Mast cells have been proposed as the leading players that may trigger the main molecular and cellular mechanisms in the development of post-COVID-19 ONFH and can be considered a diagnostic sign of the disease.</p>","PeriodicalId":520741,"journal":{"name":"Pathophysiology : the official journal of the International Society for Pathophysiology","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathophysiology : the official journal of the International Society for Pathophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pathophysiology32030036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Osteonecrosis of the femoral head (ONFH) is a common condition in hip surgery, which is characterized by the death of bone cells due to disruption of the blood supply and ultimately irreversible destruction of the hip joint. As a result of the COVID-19 pandemic, a significant increase in the incidence of ONFH has been identified. To better understand the pathogenesis of ONFH in the context of COVID-19, our research aimed to determine pathomorphological changes in articular tissues specific to post-COVID-19 ONFH. Methods: Using morphological, morphometric, and statistical methods, the femoral heads after hip arthroplasty were retrospectively studied in patients with post-COVID-19 ONFH (n = 41) compared to a non-COVID-19 group of patients (n = 47). Results: Our results revealed that the key morphofunctional biomarkers of post-COVID-19 ONFH were clusters of mast cells, extensive areas of fibrosis, numerous arterial and venous thrombi, and giant cell granulomas. The potential relationship of those morphological features with the action of the SARS-CoV-2 coronavirus was discussed. Conclusions: Mast cells have been proposed as the leading players that may trigger the main molecular and cellular mechanisms in the development of post-COVID-19 ONFH and can be considered a diagnostic sign of the disease.