Towards a radiation-free clinical decision support system for intraoperative spinal alignment assessment.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Luis Serrador, Pedro Varanda, Bruno Direito-Santos, Cristina P Santos
{"title":"Towards a radiation-free clinical decision support system for intraoperative spinal alignment assessment.","authors":"Luis Serrador, Pedro Varanda, Bruno Direito-Santos, Cristina P Santos","doi":"10.1007/s11517-025-03412-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces SpineAlign, a novel radiation-free clinical decision support system (CDSS) designed to address the challenge of intraoperative spinal alignment assessment during spinal deformity (SD) correction surgeries. SpineAlign aims to overcome the current limitations of existing systems by providing a quantitative assessment without radiation exposure in the operating room (OR), thus enhancing the safety and precision of computer-assisted spinal surgeries (CASS). The system focuses on spinal alignment calculation, leveraging Bézier curves and algorithm development to track vertebrae and estimate spinal curvature. Collaborative meetings with clinical experts identified challenges such as patient positioning complexities and limitations of minimal invasiveness. Thus, the method developed involves four algorithms: (1) tracking anatomical planes; (2) estimating the Bézier curve; (3) determining vertebrae positions; and (4) adjusting orientation. A proof of concept (PoC) using a porcine spinal segment validated SpineAlign's integrated algorithms and functionalities. The PoC demonstrated the system's accuracy and clinical applicability, successfully transitioning a spine without curvature to a lordotic spine. Quantitative evaluation of spinal alignment by the system showed high accuracy, with a maximum root mean squared error of 6 <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>∘</mo></mmultiscripts> </math> . The successful PoC marks an initial step towards developing a reliable CDSS for intraoperative spinal alignment assessment without medical image acquisition. Future steps will focus on enhancing system robustness and performing multi-surgeon serial studies to advance SpineAlign towards widespread clinical adoption.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03412-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces SpineAlign, a novel radiation-free clinical decision support system (CDSS) designed to address the challenge of intraoperative spinal alignment assessment during spinal deformity (SD) correction surgeries. SpineAlign aims to overcome the current limitations of existing systems by providing a quantitative assessment without radiation exposure in the operating room (OR), thus enhancing the safety and precision of computer-assisted spinal surgeries (CASS). The system focuses on spinal alignment calculation, leveraging Bézier curves and algorithm development to track vertebrae and estimate spinal curvature. Collaborative meetings with clinical experts identified challenges such as patient positioning complexities and limitations of minimal invasiveness. Thus, the method developed involves four algorithms: (1) tracking anatomical planes; (2) estimating the Bézier curve; (3) determining vertebrae positions; and (4) adjusting orientation. A proof of concept (PoC) using a porcine spinal segment validated SpineAlign's integrated algorithms and functionalities. The PoC demonstrated the system's accuracy and clinical applicability, successfully transitioning a spine without curvature to a lordotic spine. Quantitative evaluation of spinal alignment by the system showed high accuracy, with a maximum root mean squared error of 6 . The successful PoC marks an initial step towards developing a reliable CDSS for intraoperative spinal alignment assessment without medical image acquisition. Future steps will focus on enhancing system robustness and performing multi-surgeon serial studies to advance SpineAlign towards widespread clinical adoption.

一种用于术中脊柱对齐评估的无辐射临床决策支持系统。
SpineAlign是一种新型的无辐射临床决策支持系统(CDSS),旨在解决脊柱畸形(SD)矫正手术中术中脊柱对齐评估的挑战。SpineAlign旨在通过在手术室(OR)中提供无辐射暴露的定量评估来克服现有系统的局限性,从而提高计算机辅助脊柱手术(CASS)的安全性和准确性。该系统侧重于脊柱对齐计算,利用bsamzier曲线和算法开发来跟踪椎骨并估计脊柱曲率。与临床专家的协作会议确定了诸如患者定位复杂性和最小侵入性局限性等挑战。因此,所开发的方法涉及四个算法:(1)跟踪解剖平面;(2)估算bsamzier曲线;(3)确定椎骨位置;(4)调整方位。使用猪脊柱段的概念验证(PoC)验证了SpineAlign的集成算法和功能。PoC证明了该系统的准确性和临床适用性,成功地将无弯曲的脊柱转变为前凸脊柱。该系统对脊柱对准的定量评估显示出很高的准确性,最大均方根误差为6°。成功的PoC标志着开发可靠的CDSS用于术中脊柱对齐评估的第一步,无需医学图像采集。未来的步骤将集中于增强系统的稳健性,并进行多外科医生的系列研究,以推进SpineAlign的广泛临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信