An approach for cancer outcomes modelling using a comprehensive synthetic dataset.

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Lorna Tu, Hervé H F Choi, Haley Clark, Samantha A M Lloyd
{"title":"An approach for cancer outcomes modelling using a comprehensive synthetic dataset.","authors":"Lorna Tu, Hervé H F Choi, Haley Clark, Samantha A M Lloyd","doi":"10.1007/s13246-025-01594-2","DOIUrl":null,"url":null,"abstract":"<p><p>Limited patient data availability presents a challenge for efficient machine learning (ML) model development. Recent studies have proposed methods to generate synthetic medical images but lack the corresponding prognostic information required for predicting outcomes. We present a cancer outcomes modelling approach that involves generating a comprehensive synthetic dataset which can accurately mimic a real dataset. A real public dataset containing computed tomography-based radiomic features and clinical information for 132 non-small cell lung cancer patients was used. A synthetic dataset of virtual patients was synthesized using a conditional tabular generative adversarial network. Models to predict two-year overall survival were trained on real or synthetic data using combinations of four feature selection methods (mutual information, ANOVA F-test, recursive feature elimination, random forest (RF) importance weights) and six ML algorithms (RF, k-nearest neighbours, logistic regression, support vector machine, XGBoost, Gaussian Naïve Bayes). Models were tested on withheld real data and externally validated. Real and synthetic datasets were similar, with an average one minus Kolmogorov-Smirnov test statistic of 0.871 for continuous features. Chi-square test confirmed agreement for discrete features (p < 0.001). XGBoost using RF importance-based features performed the most consistently for both datasets, with percent differences in balanced accuracy and area under the precision-recall curve of < 1.3%. Preliminary findings demonstrate the potential application of synthetic radiomic and clinical data augmentation for cancer outcomes modelling, although further validation with larger diverse datasets is crucial. While our approach was described in a lung context, it may be applied to other sites or endpoints.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01594-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Limited patient data availability presents a challenge for efficient machine learning (ML) model development. Recent studies have proposed methods to generate synthetic medical images but lack the corresponding prognostic information required for predicting outcomes. We present a cancer outcomes modelling approach that involves generating a comprehensive synthetic dataset which can accurately mimic a real dataset. A real public dataset containing computed tomography-based radiomic features and clinical information for 132 non-small cell lung cancer patients was used. A synthetic dataset of virtual patients was synthesized using a conditional tabular generative adversarial network. Models to predict two-year overall survival were trained on real or synthetic data using combinations of four feature selection methods (mutual information, ANOVA F-test, recursive feature elimination, random forest (RF) importance weights) and six ML algorithms (RF, k-nearest neighbours, logistic regression, support vector machine, XGBoost, Gaussian Naïve Bayes). Models were tested on withheld real data and externally validated. Real and synthetic datasets were similar, with an average one minus Kolmogorov-Smirnov test statistic of 0.871 for continuous features. Chi-square test confirmed agreement for discrete features (p < 0.001). XGBoost using RF importance-based features performed the most consistently for both datasets, with percent differences in balanced accuracy and area under the precision-recall curve of < 1.3%. Preliminary findings demonstrate the potential application of synthetic radiomic and clinical data augmentation for cancer outcomes modelling, although further validation with larger diverse datasets is crucial. While our approach was described in a lung context, it may be applied to other sites or endpoints.

一种使用综合合成数据集的癌症结果建模方法。
有限的患者数据可用性对有效的机器学习(ML)模型开发提出了挑战。最近的研究提出了生成合成医学图像的方法,但缺乏预测结果所需的相应预后信息。我们提出了一种癌症结果建模方法,该方法涉及生成一个全面的合成数据集,可以准确地模拟真实数据集。使用了一个真实的公共数据集,其中包含了132例非小细胞肺癌患者的基于计算机断层扫描的放射学特征和临床信息。利用条件表格生成对抗网络,合成了虚拟患者的合成数据集。使用四种特征选择方法(互信息、方差分析f检验、递归特征消除、随机森林(RF)重要性权重)和六种ML算法(RF、k-近邻、逻辑回归、支持向量机、XGBoost、高斯Naïve贝叶斯)的组合,在真实或合成数据上训练预测两年总体生存的模型。模型在保留的真实数据上进行测试并进行外部验证。真实数据集和合成数据集相似,连续特征的平均1 - Kolmogorov-Smirnov检验统计量为0.871。卡方检验证实了离散特征的一致性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信