Sarah A Lester, Sabri H Abdelwahab, Scott H Randell, Samir N P Kelada
{"title":"Culture Media Influences Primary Human Bronchial Epithelial Cell Morphology, Differentiation Status, and Transcriptional Response to Ozone Exposure.","authors":"Sarah A Lester, Sabri H Abdelwahab, Scott H Randell, Samir N P Kelada","doi":"10.1093/toxsci/kfaf089","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to the ambient air pollutant ozone induces acute and chronic respiratory health effects in part by causing inflammation of the airways. Several aspects of the inflammatory response to ozone can be modeled in vitro using primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface. We tested two commonly used HBEC culture media systems, one proprietary and one non-proprietary, to identify which system yielded the most in vivo-like pro-inflammatory response to acute ozone exposure as reflected by gene expression. Cells from six donors were grown in each culture system in parallel followed by examination of epithelial morphology and cell type proportions prior to ozone exposure. Cultures grown in the proprietary system were notably thicker and contained more ciliated and secretory cells, as well as internal cyst-like structures. The transcriptomic response to acute ozone exposure (0.5 parts per million ozone x 2 hours) was strongly affected by media. HBECs grown in the proprietary system exhibited minimal changes after ozone, with only 7 differentially expressed genes (DEGs). In contrast, HBECs grown in the non-proprietary system exhibited a more dynamic response with 128 DEGs, including hallmark response genes indicative of inflammation (CXCL8) and oxidative stress (HMOX1). Gene set enrichment analysis using the 128 DEGs further corroborated upregulation of oxidative stress and inflammation pathways. In total, our results indicate that the choice of HBEC culture media should be carefully considered to best model the in vivo response to ozone.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to the ambient air pollutant ozone induces acute and chronic respiratory health effects in part by causing inflammation of the airways. Several aspects of the inflammatory response to ozone can be modeled in vitro using primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface. We tested two commonly used HBEC culture media systems, one proprietary and one non-proprietary, to identify which system yielded the most in vivo-like pro-inflammatory response to acute ozone exposure as reflected by gene expression. Cells from six donors were grown in each culture system in parallel followed by examination of epithelial morphology and cell type proportions prior to ozone exposure. Cultures grown in the proprietary system were notably thicker and contained more ciliated and secretory cells, as well as internal cyst-like structures. The transcriptomic response to acute ozone exposure (0.5 parts per million ozone x 2 hours) was strongly affected by media. HBECs grown in the proprietary system exhibited minimal changes after ozone, with only 7 differentially expressed genes (DEGs). In contrast, HBECs grown in the non-proprietary system exhibited a more dynamic response with 128 DEGs, including hallmark response genes indicative of inflammation (CXCL8) and oxidative stress (HMOX1). Gene set enrichment analysis using the 128 DEGs further corroborated upregulation of oxidative stress and inflammation pathways. In total, our results indicate that the choice of HBEC culture media should be carefully considered to best model the in vivo response to ozone.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.