Explainable Temporal Inference for Irregular Multivariate Time Series. A Case Study for Early Prediction of Multidrug Resistance.

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Oscar Escudero-Arnanz, Cristina Soguero-Ruiz, Joaquin Alvarez-Rodriguez, Antonio G Marques
{"title":"Explainable Temporal Inference for Irregular Multivariate Time Series. A Case Study for Early Prediction of Multidrug Resistance.","authors":"Oscar Escudero-Arnanz, Cristina Soguero-Ruiz, Joaquin Alvarez-Rodriguez, Antonio G Marques","doi":"10.1109/TBME.2025.3591924","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Many healthcare problems involve complex patient trajectories represented as Multivariate Time Series (MTS), with predictions often coming as Time Series (TS) outputs. Despite recent advances, these \"MTS-to-TS\" inference tasks remain challenging due to data irregularity, temporal dependencies, and the need for clinical explainability. To address these demands, we propose novel eXplainable Artificial Intelligence (XAI) methods for \"MTS-to-TS\" architectures, enabling tracking of patient evolution and identification of key variable patterns associated with adverse outcomes. We evaluate our approach on private ICU data from the University Hospital of Fuenlabrada (UHF) for Multidrug Resistance (MDR) prediction and the public HiRID dataset (circulatory failure).</p><p><strong>Methods: </strong>We introduce three XAI techniques: i) Irregular Time SHapley Additive exPlanation (IT-SHAP), a post-hoc extension of TimeSHAP to TS outputs; ii) Hadamard Attention, an intrinsic mechanism for capturing temporal dependencies; and iii) Causal Conditional Mutual Information, a pre-hoc approach for feature selection.</p><p><strong>Results: </strong>MDR prediction achieved highest performance with a GRU using Hadamard Attention (ROC-AUC=0.783$\\pm$0.023), while circulatory failure was best predicted with LSTM (ROC-AUC of 0.9970$\\pm$1.6e$^{-3}$). In terms of explainability, IT-SHAP uncovered clinically relevant risk factors-early antibiotic use and bacterial cultures-later validated by UHF clinicians.</p><p><strong>Conclusion: </strong>Our framework offers temporal explainability in \"MTS-to-TS\" architectures, allowing clinicians to trace disease trajectories and understand the contribution of each variable at each time step.</p><p><strong>Significance: </strong>Integrating explainable MDR risk predictions into EHR systems enables early interventions, improved antimicrobial stewardship, and infection control. The framework's scalability to other ICU challenges underscores its clinical impact.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3591924","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Many healthcare problems involve complex patient trajectories represented as Multivariate Time Series (MTS), with predictions often coming as Time Series (TS) outputs. Despite recent advances, these "MTS-to-TS" inference tasks remain challenging due to data irregularity, temporal dependencies, and the need for clinical explainability. To address these demands, we propose novel eXplainable Artificial Intelligence (XAI) methods for "MTS-to-TS" architectures, enabling tracking of patient evolution and identification of key variable patterns associated with adverse outcomes. We evaluate our approach on private ICU data from the University Hospital of Fuenlabrada (UHF) for Multidrug Resistance (MDR) prediction and the public HiRID dataset (circulatory failure).

Methods: We introduce three XAI techniques: i) Irregular Time SHapley Additive exPlanation (IT-SHAP), a post-hoc extension of TimeSHAP to TS outputs; ii) Hadamard Attention, an intrinsic mechanism for capturing temporal dependencies; and iii) Causal Conditional Mutual Information, a pre-hoc approach for feature selection.

Results: MDR prediction achieved highest performance with a GRU using Hadamard Attention (ROC-AUC=0.783$\pm$0.023), while circulatory failure was best predicted with LSTM (ROC-AUC of 0.9970$\pm$1.6e$^{-3}$). In terms of explainability, IT-SHAP uncovered clinically relevant risk factors-early antibiotic use and bacterial cultures-later validated by UHF clinicians.

Conclusion: Our framework offers temporal explainability in "MTS-to-TS" architectures, allowing clinicians to trace disease trajectories and understand the contribution of each variable at each time step.

Significance: Integrating explainable MDR risk predictions into EHR systems enables early interventions, improved antimicrobial stewardship, and infection control. The framework's scalability to other ICU challenges underscores its clinical impact.

不规则多元时间序列的可解释时间推断。多药耐药早期预测的案例研究。
目的:许多医疗保健问题涉及以多变量时间序列(MTS)表示的复杂患者轨迹,其预测通常作为时间序列(TS)输出。尽管最近取得了进展,但由于数据不规则性、时间依赖性和临床可解释性的需要,这些“MTS-to-TS”推理任务仍然具有挑战性。为了满足这些需求,我们提出了用于“MTS-to-TS”架构的新型可解释人工智能(XAI)方法,可以跟踪患者的进化并识别与不良结果相关的关键变量模式。我们对来自Fuenlabrada大学医院(UHF)的私人ICU数据进行了多药耐药(MDR)预测和公共HiRID数据集(循环衰竭)的评估。方法:介绍了三种XAI技术:i)不规则时间SHapley加性解释(IT-SHAP),这是一种将TimeSHAP扩展到TS输出的事后扩展;ii) Hadamard Attention,捕捉时间依赖性的内在机制;iii)因果条件互信息,一种用于特征选择的预先方法。结果:使用Hadamard Attention的GRU预测MDR效果最好(ROC-AUC=0.783$\pm$0.023),而使用LSTM的GRU预测循环衰竭效果最好(ROC-AUC为0.9970$\pm$1.6e$^{-3}$)。在可解释性方面,IT-SHAP揭示了临床相关的风险因素-早期抗生素使用和细菌培养-后来由超高频临床医生验证。结论:我们的框架在“MTS-to-TS”架构中提供了时间上的可解释性,允许临床医生追踪疾病轨迹并了解每个时间步上每个变量的贡献。意义:将可解释的耐多药风险预测整合到电子病历系统中,可以实现早期干预,改善抗菌药物管理和感染控制。该框架对其他ICU挑战的可扩展性强调了其临床影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信