Valérie de Crécy-Lagard, Raquel Dias, Nick Sexson, Iddo Friedberg, Yifeng Yuan, Manal A Swairjo
{"title":"Limitations of Current Machine-Learning Models in Predicting Enzymatic Functions for Uncharacterized Proteins.","authors":"Valérie de Crécy-Lagard, Raquel Dias, Nick Sexson, Iddo Friedberg, Yifeng Yuan, Manal A Swairjo","doi":"10.1093/g3journal/jkaf169","DOIUrl":null,"url":null,"abstract":"<p><p>Thirty to seventy percent of proteins in any given genome have no assigned function and have been labeled as the protein \"unknome\". This large knowledge shortfall is one of the final frontiers of biology. Machine-Learning (ML) approaches are enticing, with early successes demonstrating the ability to propagate functional knowledge from experimentally characterized proteins. An open question is the ability of machine-learning approaches to predict enzymatic functions unseen in the training sets. By integrating literature and a combination of bioinformatic approaches, we evaluated individually Enzyme Commission number predictions for over 450 Escherichia coli unknowns made using state-of-the-art machine-learning approaches. We found that current ML methods not only mostly fail to make novel predictions but also make basic logic errors in their predictions that human annotators avoid by leveraging the available knowledge base. This underscores the need to include assessments of prediction uncertainty in model output and to test for 'hallucinations' (logic failures) as a part of model evaluation. Explainable AI (XAI) analysis can be used to identify indicators of prediction errors, potentially identifying the most relevant data to include in the next generation of computational models.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf169","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Thirty to seventy percent of proteins in any given genome have no assigned function and have been labeled as the protein "unknome". This large knowledge shortfall is one of the final frontiers of biology. Machine-Learning (ML) approaches are enticing, with early successes demonstrating the ability to propagate functional knowledge from experimentally characterized proteins. An open question is the ability of machine-learning approaches to predict enzymatic functions unseen in the training sets. By integrating literature and a combination of bioinformatic approaches, we evaluated individually Enzyme Commission number predictions for over 450 Escherichia coli unknowns made using state-of-the-art machine-learning approaches. We found that current ML methods not only mostly fail to make novel predictions but also make basic logic errors in their predictions that human annotators avoid by leveraging the available knowledge base. This underscores the need to include assessments of prediction uncertainty in model output and to test for 'hallucinations' (logic failures) as a part of model evaluation. Explainable AI (XAI) analysis can be used to identify indicators of prediction errors, potentially identifying the most relevant data to include in the next generation of computational models.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.