Emma Lindell, Jing Guo, Miao Zhao, Natallia Rameika, Xi Lu, Tabea Wacker, Lei Zhong, Tobias Bergström, Sara Svanberg, Azazul I Chowdhury, Peter Bergsten, Xingqi Chen, Daniel Bexell, Fredrik J Swartling, Tobias Sjöblom, Xiaonan Zhang
{"title":"Identification of a small molecule targeting EPLIN as a novel strategy for the treatment of pediatric neuroblastoma and medulloblastoma.","authors":"Emma Lindell, Jing Guo, Miao Zhao, Natallia Rameika, Xi Lu, Tabea Wacker, Lei Zhong, Tobias Bergström, Sara Svanberg, Azazul I Chowdhury, Peter Bergsten, Xingqi Chen, Daniel Bexell, Fredrik J Swartling, Tobias Sjöblom, Xiaonan Zhang","doi":"10.1038/s41419-025-07876-7","DOIUrl":null,"url":null,"abstract":"<p><p>Amplification of the MYCN proto-oncogene serves as a key marker of aggressive disease and poor treatment outcomes in certain pediatric tumors originating from the nervous system, including neuroblastoma and medulloblastoma. However, the complex nature of the challenging MYCN protein underscores the urgent need for additional targets and therapies to tackle neuroblastoma and medulloblastoma. In this study, with a primary focus on neuroblastoma and the aim of also benefiting children with medulloblastoma, we identified FLIX5, a small compound that exhibits broad cytotoxicity against both neuroblastoma and medulloblastoma cells, primarily by triggering apoptosis. Furthermore, FLIX5 enhances the cholesterol dependency of neuroblastoma cells under conditions where mitochondrial function is impaired. FLIX5 as well shows a synergistic effect when combined with vincristine, a conventional anticancer drug, against neuroblastoma cells and organoids. Through proteome integral solubility alteration, computational molecular docking predictions, and cellular thermal shift assays for target identification and validation, FLIX5 reveals EPLIN (Epithelial Protein Lost In Neoplasm) as a previously unexplored drug target. EPLIN is involved in several cellular processes, including cholesterol uptake and mitochondrial function. The discovery of FLIX5 targeting EPLIN presents new opportunities for treating malignant pediatric tumors, with the potential to target chemoresistant dormant cancer cells and broaden its therapeutic applications to other tumor types.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"554"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07876-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amplification of the MYCN proto-oncogene serves as a key marker of aggressive disease and poor treatment outcomes in certain pediatric tumors originating from the nervous system, including neuroblastoma and medulloblastoma. However, the complex nature of the challenging MYCN protein underscores the urgent need for additional targets and therapies to tackle neuroblastoma and medulloblastoma. In this study, with a primary focus on neuroblastoma and the aim of also benefiting children with medulloblastoma, we identified FLIX5, a small compound that exhibits broad cytotoxicity against both neuroblastoma and medulloblastoma cells, primarily by triggering apoptosis. Furthermore, FLIX5 enhances the cholesterol dependency of neuroblastoma cells under conditions where mitochondrial function is impaired. FLIX5 as well shows a synergistic effect when combined with vincristine, a conventional anticancer drug, against neuroblastoma cells and organoids. Through proteome integral solubility alteration, computational molecular docking predictions, and cellular thermal shift assays for target identification and validation, FLIX5 reveals EPLIN (Epithelial Protein Lost In Neoplasm) as a previously unexplored drug target. EPLIN is involved in several cellular processes, including cholesterol uptake and mitochondrial function. The discovery of FLIX5 targeting EPLIN presents new opportunities for treating malignant pediatric tumors, with the potential to target chemoresistant dormant cancer cells and broaden its therapeutic applications to other tumor types.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism