A De Novo Designed Protein with Versatile Metal Binding and Tunable Hydrolytic Activity.

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexander M Hoffnagle, Suppachai Srisantitham, Maximilian Neeley, Chia-Ying Tsai, F Akif Tezcan
{"title":"A <i>De Novo</i> Designed Protein with Versatile Metal Binding and Tunable Hydrolytic Activity.","authors":"Alexander M Hoffnagle, Suppachai Srisantitham, Maximilian Neeley, Chia-Ying Tsai, F Akif Tezcan","doi":"10.1021/acs.biochem.5c00259","DOIUrl":null,"url":null,"abstract":"<p><p>Metalloenzyme superfamilies achieve diverse functions within a shared structural framework, and similar functional variety may be achievable in designed proteins. We have previously reported a computational approach that enables the <i>de novo</i> design of symmetric protein assemblies around metal centers with predefined coordination geometries. Here, we demonstrate that an artificial protein trimer, termed Tet4, whose structure was designed around an idealized tetrahedral His<sub>3</sub>/H<sub>2</sub>O-Zn<sup>II</sup> coordination motif, enables the high-affinity binding of several other divalent first-row transition metal ions in the same geometry as for Zn<sup>II</sup>. We then follow the proposed evolutionary path of a natural metalloenzyme superfamily by engineering a pseudosymmetric, single-chain variant of Tet4, scTet4<sup>25</sup>. scTet4<sup>25</sup> allows us to introduce asymmetric point mutations that influence the catalytic properties of the metal center. We also demonstrate that we can further tune the enzymatic activity of Tet4 by designing a substrate pocket that improves Zn-Tet4's affinity for a hydrolysis substrate, 4-methylumbelliferyl acetate.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00259","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metalloenzyme superfamilies achieve diverse functions within a shared structural framework, and similar functional variety may be achievable in designed proteins. We have previously reported a computational approach that enables the de novo design of symmetric protein assemblies around metal centers with predefined coordination geometries. Here, we demonstrate that an artificial protein trimer, termed Tet4, whose structure was designed around an idealized tetrahedral His3/H2O-ZnII coordination motif, enables the high-affinity binding of several other divalent first-row transition metal ions in the same geometry as for ZnII. We then follow the proposed evolutionary path of a natural metalloenzyme superfamily by engineering a pseudosymmetric, single-chain variant of Tet4, scTet425. scTet425 allows us to introduce asymmetric point mutations that influence the catalytic properties of the metal center. We also demonstrate that we can further tune the enzymatic activity of Tet4 by designing a substrate pocket that improves Zn-Tet4's affinity for a hydrolysis substrate, 4-methylumbelliferyl acetate.

一种全新设计的具有多功能金属结合和可调水解活性的蛋白质。
金属酶超家族在共享的结构框架内实现多种功能,并且在设计的蛋白质中可以实现类似的功能多样性。我们之前已经报道了一种计算方法,该方法可以重新设计具有预定义协调几何形状的金属中心周围的对称蛋白质组件。在这里,我们证明了一种被称为Tet4的人工蛋白三聚体,其结构是围绕一个理想的四面体His3/H2O-ZnII配位基序设计的,能够高亲和力地结合其他几种与ZnII相同几何形状的二价第一排过渡金属离子。然后,我们通过设计te4的伪对称单链变体scTet425,遵循天然金属酶超家族的进化路径。scTet425允许我们引入影响金属中心催化性能的不对称点突变。我们还证明,我们可以通过设计一个底物袋来进一步调整te4的酶活性,该底物袋可以提高zn - te4对水解底物4-甲基伞形叶乙酸酯的亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信