Disjoint dominating and 2-dominating sets in graphs: Hardness and approximation results

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Soumyashree Rana , Sounaka Mishra , Bhawani Sankar Panda
{"title":"Disjoint dominating and 2-dominating sets in graphs: Hardness and approximation results","authors":"Soumyashree Rana ,&nbsp;Sounaka Mishra ,&nbsp;Bhawani Sankar Panda","doi":"10.1016/j.disopt.2025.100902","DOIUrl":null,"url":null,"abstract":"<div><div>A set <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is a dominating set of <span><math><mi>G</mi></math></span> if each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>D</mi></mrow></math></span> is adjacent to at least one vertex in <span><math><mrow><mi>D</mi><mo>,</mo></mrow></math></span> whereas a set <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>V</mi></mrow></math></span> is a 2-dominating (double dominating) set of <span><math><mi>G</mi></math></span> if each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> is adjacent to at least two vertices in <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></mrow></math></span> A graph <span><math><mi>G</mi></math></span> is a <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph if there exists a pair (<span><math><mrow><mi>D</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) of dominating set and 2-dominating set of <span><math><mi>G</mi></math></span> which are disjoint. In this paper, we give approximation algorithms for the problem of determining a minimal spanning <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph of minimum size (<span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an approximation ratio of 3; a minimal spanning <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph of maximum size (<span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an approximation ratio of 3; and for the problem of adding minimum number of edges to a graph <span><math><mi>G</mi></math></span> to make it a <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph (<span>Min-to-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> approximation ratio. The above three results answer the open problems mentioned in the paper, Miotk et al. (2020). Furthermore, we prove that <span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> are <span>APX</span>-complete for graphs with maximum degree <span><math><mrow><mn>4</mn><mo>.</mo></mrow></math></span> We also show that <span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> are approximable within a factor of 1.8 and 1.5, respectively, for any 3-regular graph. Finally, we show the inapproximability result of <span>Max-Min-to-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for bipartite graphs: this problem cannot be approximated within <span><math><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>−</mo><mi>ɛ</mi></mrow></msup></math></span> for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mrow></math></span> unless <span>P=NP</span>.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100902"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000258","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A set DV of a graph G=(V,E) is a dominating set of G if each vertex vVD is adjacent to at least one vertex in D, whereas a set D2V is a 2-dominating (double dominating) set of G if each vertex vVD2 is adjacent to at least two vertices in D2. A graph G is a DD2-graph if there exists a pair (D,D2) of dominating set and 2-dominating set of G which are disjoint. In this paper, we give approximation algorithms for the problem of determining a minimal spanning DD2-graph of minimum size (Min- DD2) with an approximation ratio of 3; a minimal spanning DD2-graph of maximum size (Max- DD2) with an approximation ratio of 3; and for the problem of adding minimum number of edges to a graph G to make it a DD2-graph (Min-to- DD2) with an O(logn) approximation ratio. The above three results answer the open problems mentioned in the paper, Miotk et al. (2020). Furthermore, we prove that Min- DD2 and Max- DD2 are APX-complete for graphs with maximum degree 4. We also show that Min- DD2 and Max- DD2 are approximable within a factor of 1.8 and 1.5, respectively, for any 3-regular graph. Finally, we show the inapproximability result of Max-Min-to- DD2 for bipartite graphs: this problem cannot be approximated within n16ɛ for any ɛ>0, unless P=NP.
图中的不相交支配集和2支配集:硬度和近似结果
当图G=(V,E)的每个顶点V∈V≠D与D中的至少一个顶点邻接,则集合D是G的控制集;当每个顶点V∈V∈D2与D2中的至少两个顶点邻接,则集合D2是G的2-控制(双控制)集。如果存在不相交的G的支配集和2-支配集对(D,D2),则图G是一个dd2图。本文给出了确定最小生成DD2图(Min- DD2)的近似算法,近似比为3;最小生成DD2图的最大尺寸(Max- DD2),近似比为3;以及为图G添加最小边数以使其成为具有O(logn)近似比的DD2图(Min-to- DD2)的问题。以上三个结果回答了Miotk et al.(2020)论文中提到的开放性问题。进一步证明了对于最大度为4的图,Min- DD2和Max- DD2是apx完全的。我们还表明,对于任何3正则图,Min- DD2和Max- DD2分别在1.8和1.5因子内近似。最后,我们给出了二部图的Max-Min-to- DD2的不可逼近性结果:除非P=NP,否则该问题不能在n16−_i内逼近任何_i >;0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信