Soumyashree Rana , Sounaka Mishra , Bhawani Sankar Panda
{"title":"Disjoint dominating and 2-dominating sets in graphs: Hardness and approximation results","authors":"Soumyashree Rana , Sounaka Mishra , Bhawani Sankar Panda","doi":"10.1016/j.disopt.2025.100902","DOIUrl":null,"url":null,"abstract":"<div><div>A set <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is a dominating set of <span><math><mi>G</mi></math></span> if each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><mi>D</mi></mrow></math></span> is adjacent to at least one vertex in <span><math><mrow><mi>D</mi><mo>,</mo></mrow></math></span> whereas a set <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>V</mi></mrow></math></span> is a 2-dominating (double dominating) set of <span><math><mi>G</mi></math></span> if each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>∖</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> is adjacent to at least two vertices in <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></mrow></math></span> A graph <span><math><mi>G</mi></math></span> is a <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph if there exists a pair (<span><math><mrow><mi>D</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) of dominating set and 2-dominating set of <span><math><mi>G</mi></math></span> which are disjoint. In this paper, we give approximation algorithms for the problem of determining a minimal spanning <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph of minimum size (<span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an approximation ratio of 3; a minimal spanning <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph of maximum size (<span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an approximation ratio of 3; and for the problem of adding minimum number of edges to a graph <span><math><mi>G</mi></math></span> to make it a <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-graph (<span>Min-to-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) with an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> approximation ratio. The above three results answer the open problems mentioned in the paper, Miotk et al. (2020). Furthermore, we prove that <span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> are <span>APX</span>-complete for graphs with maximum degree <span><math><mrow><mn>4</mn><mo>.</mo></mrow></math></span> We also show that <span>Min-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span>Max-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> are approximable within a factor of 1.8 and 1.5, respectively, for any 3-regular graph. Finally, we show the inapproximability result of <span>Max-Min-to-</span> <span><math><mrow><mi>D</mi><mspace></mspace><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for bipartite graphs: this problem cannot be approximated within <span><math><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>−</mo><mi>ɛ</mi></mrow></msup></math></span> for any <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span> unless <span>P=NP</span>.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100902"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000258","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A set of a graph is a dominating set of if each vertex is adjacent to at least one vertex in whereas a set is a 2-dominating (double dominating) set of if each vertex is adjacent to at least two vertices in A graph is a -graph if there exists a pair () of dominating set and 2-dominating set of which are disjoint. In this paper, we give approximation algorithms for the problem of determining a minimal spanning -graph of minimum size (Min- ) with an approximation ratio of 3; a minimal spanning -graph of maximum size (Max- ) with an approximation ratio of 3; and for the problem of adding minimum number of edges to a graph to make it a -graph (Min-to- ) with an approximation ratio. The above three results answer the open problems mentioned in the paper, Miotk et al. (2020). Furthermore, we prove that Min- and Max- are APX-complete for graphs with maximum degree We also show that Min- and Max- are approximable within a factor of 1.8 and 1.5, respectively, for any 3-regular graph. Finally, we show the inapproximability result of Max-Min-to- for bipartite graphs: this problem cannot be approximated within for any unless P=NP.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.