Exploring fractal–fractional integral inequalities: An extensive parametric study

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pan Gong , Badreddine Meftah , Hongyan Xu , Hüseyin Budak , Abdelghani Lakhdari
{"title":"Exploring fractal–fractional integral inequalities: An extensive parametric study","authors":"Pan Gong ,&nbsp;Badreddine Meftah ,&nbsp;Hongyan Xu ,&nbsp;Hüseyin Budak ,&nbsp;Abdelghani Lakhdari","doi":"10.1016/j.chaos.2025.116772","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate fractal–fractional integral inequalities for generalized <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span>-convex functions, a topic of growing interest in the field of fractional calculus. We begin by establishing a fractal–fractional Hermite–Hadamard inequality, providing a novel perspective on fractal <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span>-convexity. Subsequently, we introduce a parameterized identity involving fractal–fractional integrals, which serves as a cornerstone for deriving midpoint-, trapezium-, Bullen-, Milne-, and Simpson-type inequalities. The results are developed for mappings whose fractal derivatives display generalized <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span>-convexity. Additionally, we present a numerical example with graphical representations to validate the theoretical findings. By leveraging improved versions of the Hölder and power mean inequalities, we further extend the applicability of our results. The study concludes by highlighting potential applications and proposing directions for future research, emphasizing the significance of these contributions to the broader field of mathematical analysis and optimization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007854","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate fractal–fractional integral inequalities for generalized (s,P)-convex functions, a topic of growing interest in the field of fractional calculus. We begin by establishing a fractal–fractional Hermite–Hadamard inequality, providing a novel perspective on fractal (s,P)-convexity. Subsequently, we introduce a parameterized identity involving fractal–fractional integrals, which serves as a cornerstone for deriving midpoint-, trapezium-, Bullen-, Milne-, and Simpson-type inequalities. The results are developed for mappings whose fractal derivatives display generalized (s,P)-convexity. Additionally, we present a numerical example with graphical representations to validate the theoretical findings. By leveraging improved versions of the Hölder and power mean inequalities, we further extend the applicability of our results. The study concludes by highlighting potential applications and proposing directions for future research, emphasizing the significance of these contributions to the broader field of mathematical analysis and optimization.
探索分形-分数阶积分不等式:一个广泛的参数研究
在本文中,我们研究了广义(s,P)-凸函数的分形-分数阶积分不等式,这是分数阶微积分领域中一个越来越受关注的话题。我们首先建立了一个分形-分数形Hermite-Hadamard不等式,为分形(s,P)-凸性提供了一个新的视角。随后,我们引入了一个涉及分形-分数积分的参数化恒等式,它作为推导中点-、梯形-、布伦-、米尔恩-和辛普森型不等式的基础。给出了分形导数具有广义(s,P)-凸性的映射的结果。此外,我们提出了一个图形表示的数值例子来验证理论发现。通过利用Hölder和幂平均不等式的改进版本,我们进一步扩展了结果的适用性。研究总结了潜在的应用,并提出了未来的研究方向,强调了这些贡献对更广泛的数学分析和优化领域的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信