A novel hybrid model for brain tumor analysis with CNN and Moth Flame Optimization

Q1 Medicine
Mohit Prakram , Kirti Rawal , Arun Singh , Ankur Goyal , Shiv Kant , Shakeel Ahmed , Saiprasad Potharaju
{"title":"A novel hybrid model for brain tumor analysis with CNN and Moth Flame Optimization","authors":"Mohit Prakram ,&nbsp;Kirti Rawal ,&nbsp;Arun Singh ,&nbsp;Ankur Goyal ,&nbsp;Shiv Kant ,&nbsp;Shakeel Ahmed ,&nbsp;Saiprasad Potharaju","doi":"10.1016/j.imu.2025.101671","DOIUrl":null,"url":null,"abstract":"<div><div>Early and accurate detection of brain tumors is vital for improving patient outcomes and treatment decisions. This study presents a Hybrid Brain Tumor Analysis (BTA) framework that integrates Moth Flame Optimization (MFO) and Convolutional Neural Networks (CNNs) for tumor identification, segmentation, and classification using MRI scans. A hybrid segmentation approach is employed, combining K-means clustering with MFO and a custom fitness function to extract tumor regions. Feature extraction is followed by MFO-based feature selection to reduce dimensionality and enhance classification performance. The refined features are used to train a custom CNN architecture, BTA-Net, for classifying tumors into meningioma, glioma, and pituitary types. The proposed model achieves a 3.22 % improvement in classification accuracy compared to baseline methods, along with notable gains in precision (4.07 %), recall (2.46 %), and F-measure (3.25 %). Statistical validation confirms the significance of these results, making the BTA framework a robust tool for automated brain tumor analysis.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"57 ","pages":"Article 101671"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Early and accurate detection of brain tumors is vital for improving patient outcomes and treatment decisions. This study presents a Hybrid Brain Tumor Analysis (BTA) framework that integrates Moth Flame Optimization (MFO) and Convolutional Neural Networks (CNNs) for tumor identification, segmentation, and classification using MRI scans. A hybrid segmentation approach is employed, combining K-means clustering with MFO and a custom fitness function to extract tumor regions. Feature extraction is followed by MFO-based feature selection to reduce dimensionality and enhance classification performance. The refined features are used to train a custom CNN architecture, BTA-Net, for classifying tumors into meningioma, glioma, and pituitary types. The proposed model achieves a 3.22 % improvement in classification accuracy compared to baseline methods, along with notable gains in precision (4.07 %), recall (2.46 %), and F-measure (3.25 %). Statistical validation confirms the significance of these results, making the BTA framework a robust tool for automated brain tumor analysis.
基于CNN和蛾焰优化的新型脑肿瘤混合分析模型
早期和准确的脑肿瘤检测对于改善患者预后和治疗决策至关重要。本研究提出了一种混合脑肿瘤分析(BTA)框架,该框架集成了蛾焰优化(MFO)和卷积神经网络(cnn),用于使用MRI扫描进行肿瘤识别、分割和分类。采用一种混合分割方法,将K-means聚类与最大最小二乘法和自定义适应度函数相结合,提取肿瘤区域。在特征提取之后,进行基于mfo的特征选择,降低维数,提高分类性能。这些精细的特征被用来训练一个定制的CNN架构,BTA-Net,用于将肿瘤分类为脑膜瘤、胶质瘤和垂体类型。与基线方法相比,所提出的模型在分类准确率方面提高了3.22%,同时在精度(4.07%)、召回率(2.46%)和F-measure(3.25%)方面也有显著提高。统计验证证实了这些结果的重要性,使BTA框架成为自动化脑肿瘤分析的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信