{"title":"A spectral radius for matrices over an operator space","authors":"Orr Moshe Shalit , Eli Shamovich","doi":"10.1016/j.aim.2025.110449","DOIUrl":null,"url":null,"abstract":"<div><div>With every operator space structure <span><math><mi>E</mi></math></span> on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we associate a spectral radius function <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> on <em>d</em>-tuples of operators. For a <em>d</em>-tuple <span><math><mi>X</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of matrices we show that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo><</mo><mn>1</mn></math></span> if and only if <em>X</em> is jointly similar to a tuple in the open unit ball of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, that is, there is an invertible matrix <em>S</em> such that <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></mrow></msub><mo><</mo><mn>1</mn></math></span>, where <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>S</mi><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>S</mi><mo>)</mo></math></span>. More generally, for all <span><math><mi>X</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>K</mi><mo>)</mo><msub><mrow><mo>⊗</mo></mrow><mrow><mi>min</mi></mrow></msub><mi>E</mi></math></span> we show that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo><</mo><mn>1</mn></math></span> if and only if there exists an invertible <span><math><mi>S</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>⊗</mo><mi>I</mi></math></span> such that <span><math><mo>‖</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>‖</mo><mo><</mo><mn>1</mn></math></span>. When <span><math><mi>E</mi></math></span> is the row operator space, for example, our spectral radius coincides with the joint spectral radius considered by Bunce, Popescu, and others, and we recover the condition for a tuple of matrices to be simultaneously similar to a strict row contraction. When <span><math><mi>E</mi></math></span> is the minimal operator space <span><math><mi>min</mi><mo></mo><mo>(</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>)</mo></math></span>, our spectral radius <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> is related to the joint spectral radius considered by Rota and Strang but differs from it and has the advantage that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo><</mo><mn>1</mn></math></span> if and only if <em>X</em> is simultaneously similar to a tuple of strict contractions. We show that for an nc rational function <em>f</em> with descriptor realization <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>, the spectral radius <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo><</mo><mn>1</mn></math></span> if and only if the domain of <em>f</em> contains a neighborhood of the noncommutative closed unit ball of the operator space dual <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of <span><math><mi>E</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110449"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003470","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
With every operator space structure on , we associate a spectral radius function on d-tuples of operators. For a d-tuple of matrices we show that if and only if X is jointly similar to a tuple in the open unit ball of , that is, there is an invertible matrix S such that , where . More generally, for all we show that if and only if there exists an invertible such that . When is the row operator space, for example, our spectral radius coincides with the joint spectral radius considered by Bunce, Popescu, and others, and we recover the condition for a tuple of matrices to be simultaneously similar to a strict row contraction. When is the minimal operator space , our spectral radius is related to the joint spectral radius considered by Rota and Strang but differs from it and has the advantage that if and only if X is simultaneously similar to a tuple of strict contractions. We show that for an nc rational function f with descriptor realization , the spectral radius if and only if the domain of f contains a neighborhood of the noncommutative closed unit ball of the operator space dual of .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.