A spectral radius for matrices over an operator space

IF 1.5 1区 数学 Q1 MATHEMATICS
Orr Moshe Shalit , Eli Shamovich
{"title":"A spectral radius for matrices over an operator space","authors":"Orr Moshe Shalit ,&nbsp;Eli Shamovich","doi":"10.1016/j.aim.2025.110449","DOIUrl":null,"url":null,"abstract":"<div><div>With every operator space structure <span><math><mi>E</mi></math></span> on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we associate a spectral radius function <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> on <em>d</em>-tuples of operators. For a <em>d</em>-tuple <span><math><mi>X</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of matrices we show that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span> if and only if <em>X</em> is jointly similar to a tuple in the open unit ball of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, that is, there is an invertible matrix <em>S</em> such that <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span>, where <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>S</mi><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>S</mi><mo>)</mo></math></span>. More generally, for all <span><math><mi>X</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>K</mi><mo>)</mo><msub><mrow><mo>⊗</mo></mrow><mrow><mi>min</mi></mrow></msub><mi>E</mi></math></span> we show that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span> if and only if there exists an invertible <span><math><mi>S</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>⊗</mo><mi>I</mi></math></span> such that <span><math><mo>‖</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi><mi>S</mi><mo>‖</mo><mo>&lt;</mo><mn>1</mn></math></span>. When <span><math><mi>E</mi></math></span> is the row operator space, for example, our spectral radius coincides with the joint spectral radius considered by Bunce, Popescu, and others, and we recover the condition for a tuple of matrices to be simultaneously similar to a strict row contraction. When <span><math><mi>E</mi></math></span> is the minimal operator space <span><math><mi>min</mi><mo>⁡</mo><mo>(</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>)</mo></math></span>, our spectral radius <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> is related to the joint spectral radius considered by Rota and Strang but differs from it and has the advantage that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span> if and only if <em>X</em> is simultaneously similar to a tuple of strict contractions. We show that for an nc rational function <em>f</em> with descriptor realization <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>, the spectral radius <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span> if and only if the domain of <em>f</em> contains a neighborhood of the noncommutative closed unit ball of the operator space dual <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of <span><math><mi>E</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110449"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003470","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

With every operator space structure E on Cd, we associate a spectral radius function ρE on d-tuples of operators. For a d-tuple X=(X1,,Xd)Mn(Cd) of matrices we show that ρE(X)<1 if and only if X is jointly similar to a tuple in the open unit ball of Mn(E), that is, there is an invertible matrix S such that S1XSMn(E)<1, where S1XS=(S1X1S,,S1XdS). More generally, for all XB(K)minE we show that ρE(X)<1 if and only if there exists an invertible SB(K)I such that S1XS<1. When E is the row operator space, for example, our spectral radius coincides with the joint spectral radius considered by Bunce, Popescu, and others, and we recover the condition for a tuple of matrices to be simultaneously similar to a strict row contraction. When E is the minimal operator space min(d), our spectral radius ρE is related to the joint spectral radius considered by Rota and Strang but differs from it and has the advantage that ρE(X)<1 if and only if X is simultaneously similar to a tuple of strict contractions. We show that for an nc rational function f with descriptor realization (A,b,c), the spectral radius ρE(A)<1 if and only if the domain of f contains a neighborhood of the noncommutative closed unit ball of the operator space dual E of E.
算子空间上矩阵的谱半径
对于Cd上的每一个算子空间结构E,我们在算子的d元组上关联了一个谱半径函数ρE。对于矩阵的d元组X=(X1,…,Xd)∈Mn(Cd),证明ρE(X)<;1当且仅当X与Mn(E)的开单位球中的元组联合相似,即存在一个可逆矩阵S使‖S−1XS‖Mn(E)<1,其中S−1XS=(S−1X1S,…,S−1XdS)。更一般地说,对于所有X∈B(K)⊗minE,我们证明ρE(X)<;1当且仅当存在一个可逆的S∈B(K)⊗I使得‖S−1XS‖<;1。例如,当E是行算子空间时,我们的谱半径与Bunce, Popescu等人考虑的联合谱半径重合,我们恢复了矩阵元组同时类似于严格行收缩的条件。当E为最小算子空间min (d∞)时,我们的谱半径ρE与Rota和Strang考虑的联合谱半径相关,但又有所不同,其优点是ρE(X)<;1当且仅当X同时与严格压缩元组相似。我们证明了对于具有描述符实现(A,b,c)的nc有理函数f,谱半径ρE(A)<;1当且仅当f的定义域包含E的算子空间对偶E的非交换闭单位球的邻域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信