{"title":"Optimal asymptotic lower bound for stability of fractional Sobolev inequality and the global stability of log-Sobolev inequality on the sphere","authors":"Lu Chen , Guozhen Lu , Hanli Tang","doi":"10.1016/j.aim.2025.110438","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality:<span><span><span>(0.1)</span><span><math><msubsup><mrow><mo>‖</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>U</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>n</mi></mrow></msub><msubsup><mrow><mo>‖</mo><mi>U</mi><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>U</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is the set of maximizers of the fractional Sobolev inequality of order <em>s</em>, <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> denotes the optimal lower bound of stability. We prove that the optimal lower bound <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> when <span><math><mi>n</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> for any fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss <span><span>[22]</span></span> on the stability of the first order Sobolev inequality (i.e., <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>) and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in <span><span>[15]</span></span> in the case of <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <em>s</em> when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for any given dimension <em>n</em>. (See <span><span>Theorem 1.1</span></span> for these asymptotic estimates.) As an important application of this asymptotic estimate as <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span>, we derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in <span><span>[3]</span></span>, <span><span>[5]</span></span> with the optimal asymptotic lower bound on the sphere through the stability of fractional Sobolev inequalities with optimal asymptotic lower bound and the end-point differentiation method (see <span><span>Theorem 1.6</span></span>). This sharpens the earlier work by the authors in <span><span>[14]</span></span> where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for fixed dimension <em>n</em> and <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> for fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> (see <span><span>Theorem 1.4</span></span> and the subsequent <span><span>Remark 1.5</span></span>).</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110438"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003366","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality:(0.1) where is the set of maximizers of the fractional Sobolev inequality of order s, and denotes the optimal lower bound of stability. We prove that the optimal lower bound behaves asymptotically at the order of when for any fixed . This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss [22] on the stability of the first order Sobolev inequality (i.e., ) and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in [15] in the case of . Moreover, behaves asymptotically at the order of s when for any given dimension n. (See Theorem 1.1 for these asymptotic estimates.) As an important application of this asymptotic estimate as , we derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in [3], [5] with the optimal asymptotic lower bound on the sphere through the stability of fractional Sobolev inequalities with optimal asymptotic lower bound and the end-point differentiation method (see Theorem 1.6). This sharpens the earlier work by the authors in [14] where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when for fixed dimension n and for fixed (see Theorem 1.4 and the subsequent Remark 1.5).
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.