{"title":"ClusterDDPM: An EM clustering framework with Denoising Diffusion Probabilistic Models","authors":"Jie Yan, Jing Liu, Zhong-Yuan Zhang","doi":"10.1016/j.ins.2025.122518","DOIUrl":null,"url":null,"abstract":"<div><div>Variational autoencoder (VAE) and generative adversarial networks (GAN) have found widespread applications in clustering and have achieved significant success. However, the potential of these approaches may be limited due to VAE's mediocre generation capability or GAN's well-known instability during adversarial training. In contrast, denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models that may unlock fresh dimensions in clustering. In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs. In the E-step, we aim to derive a mixture of Gaussian priors for the subsequent M-step. In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors. We present a rigorous theoretical analysis of the optimization process in the M-step, proving that the optimizations are equivalent to maximizing the lower bound of the Q function within the vanilla EM framework under certain constraints. Comprehensive experiments validate the advantages of the proposed framework, showcasing superior performance in clustering, unsupervised conditional generation and latent representation learning. The code is available at <span><span>https://github.com/Jarvisyan/ClusterDDPM-pytorch</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"720 ","pages":"Article 122518"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525006504","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Variational autoencoder (VAE) and generative adversarial networks (GAN) have found widespread applications in clustering and have achieved significant success. However, the potential of these approaches may be limited due to VAE's mediocre generation capability or GAN's well-known instability during adversarial training. In contrast, denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models that may unlock fresh dimensions in clustering. In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs. In the E-step, we aim to derive a mixture of Gaussian priors for the subsequent M-step. In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors. We present a rigorous theoretical analysis of the optimization process in the M-step, proving that the optimizations are equivalent to maximizing the lower bound of the Q function within the vanilla EM framework under certain constraints. Comprehensive experiments validate the advantages of the proposed framework, showcasing superior performance in clustering, unsupervised conditional generation and latent representation learning. The code is available at https://github.com/Jarvisyan/ClusterDDPM-pytorch.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.