{"title":"Network classification through random walks","authors":"Gonzalo Travieso, João Merenda, Odemir M. Bruno","doi":"10.1016/j.chaos.2025.116817","DOIUrl":null,"url":null,"abstract":"<div><div>Network models have been widely used to study diverse systems and analyze their dynamic behaviors. Given the structural variability of networks, an intriguing question arises: Can we infer the type of system represented by a network based on its structure? This classification problem involves extracting relevant features from the network. Existing literature has proposed various methods that combine structural measurements and dynamical processes for feature extraction. In this study, we introduce an approach to characterize networks using statistics from random walks, which can be particularly informative about network properties. We present the employed statistical metrics and compare their performance on multiple datasets with other state-of-the-art feature extraction methods. Our results demonstrate that the proposed method is effective in many cases, often outperforming existing approaches, although some limitations are observed across certain datasets.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116817"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925008306","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Network models have been widely used to study diverse systems and analyze their dynamic behaviors. Given the structural variability of networks, an intriguing question arises: Can we infer the type of system represented by a network based on its structure? This classification problem involves extracting relevant features from the network. Existing literature has proposed various methods that combine structural measurements and dynamical processes for feature extraction. In this study, we introduce an approach to characterize networks using statistics from random walks, which can be particularly informative about network properties. We present the employed statistical metrics and compare their performance on multiple datasets with other state-of-the-art feature extraction methods. Our results demonstrate that the proposed method is effective in many cases, often outperforming existing approaches, although some limitations are observed across certain datasets.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.