Synergistic Carbon Doping and Cu Loading on Boron Nitride via Microwave Synthesis for Enhanced Atmospheric CO2 Photoreduction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Haotong Ma , Mingyu Heng , Yang Xu , Wei Bi , Yingchun Miao , Shuning Xiao
{"title":"Synergistic Carbon Doping and Cu Loading on Boron Nitride via Microwave Synthesis for Enhanced Atmospheric CO2 Photoreduction","authors":"Haotong Ma ,&nbsp;Mingyu Heng ,&nbsp;Yang Xu ,&nbsp;Wei Bi ,&nbsp;Yingchun Miao ,&nbsp;Shuning Xiao","doi":"10.1016/j.actphy.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic CO<sub>2</sub> reduction under atmospheric concentrations remains highly challenging yet critical for practical carbon-neutral applications. In this study, a Cu-loaded, carbon-doped boron nitride (Cu/BCN) photocatalyst was synthesized by a microwave-assisted molten salt method. This approach enables simultaneous carbon incorporation into the BN lattice and selective deposition of Cu nanoparticles, forming an efficient heterostructure. The synergy between C doping and Cu loading modulates the band structure, enhances visible-light absorption, promotes charge separation, and improves CO<sub>2</sub> adsorption. The optimized Cu/BCN photocatalyst achieved a CO production rate of 30.62 μmol g<sup>−1</sup> h<sup>−1</sup> with 95.8 % selectivity under ambient CO<sub>2</sub> conditions. Combined experimental and DFT analyses confirm that the Cu/BCN interface facilitates charge transfer and lowers the energy barrier for ∗COOH formation. This work demonstrates a promising route toward efficient CO<sub>2</sub> utilization directly from air, offering a scalable strategy for atmospheric carbon conversion.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 11","pages":"Article 100132"},"PeriodicalIF":10.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000888","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 reduction under atmospheric concentrations remains highly challenging yet critical for practical carbon-neutral applications. In this study, a Cu-loaded, carbon-doped boron nitride (Cu/BCN) photocatalyst was synthesized by a microwave-assisted molten salt method. This approach enables simultaneous carbon incorporation into the BN lattice and selective deposition of Cu nanoparticles, forming an efficient heterostructure. The synergy between C doping and Cu loading modulates the band structure, enhances visible-light absorption, promotes charge separation, and improves CO2 adsorption. The optimized Cu/BCN photocatalyst achieved a CO production rate of 30.62 μmol g−1 h−1 with 95.8 % selectivity under ambient CO2 conditions. Combined experimental and DFT analyses confirm that the Cu/BCN interface facilitates charge transfer and lowers the energy barrier for ∗COOH formation. This work demonstrates a promising route toward efficient CO2 utilization directly from air, offering a scalable strategy for atmospheric carbon conversion.

Abstract Image

微波合成氮化硼协同碳掺杂和Cu负载增强大气CO2光还原
在大气浓度下光催化CO2还原仍然具有高度挑战性,但对于实际的碳中和应用至关重要。本研究采用微波辅助熔盐法合成了一种负载Cu、掺杂碳的氮化硼(Cu/BCN)光催化剂。这种方法可以同时将碳掺入BN晶格并选择性沉积Cu纳米颗粒,形成有效的异质结构。C掺杂和Cu负载之间的协同作用调节了能带结构,增强了可见光吸收,促进了电荷分离,提高了CO2吸附。优化后的Cu/BCN光催化剂在环境CO2条件下CO产率为30.62 μmol g−1 h−1,选择性为95.8%。结合实验和DFT分析证实,Cu/BCN界面有利于电荷转移,降低了形成* COOH的能垒。这项工作展示了一条直接从空气中高效利用二氧化碳的有希望的途径,为大气碳转化提供了一种可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信