{"title":"Unified inverse correspondence for LE-logics","authors":"Alessandra Palmigiano , Mattia Panettiere","doi":"10.1016/j.apal.2025.103635","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize Kracht's theory of internal describability from classical modal logic to the family of all logics canonically associated with varieties of normal lattice expansions (LE algebras). We work in the purely algebraic setting of perfect LEs; the formulas playing the role of Kracht's formulas in this generalized setting pertain to a first order language whose atoms are special inequalities between terms of perfect algebras. Via duality, formulas in this language can be equivalently translated into first order conditions in the frame correspondence languages of several types of relational semantics for LE-logics.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"177 1","pages":"Article 103635"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize Kracht's theory of internal describability from classical modal logic to the family of all logics canonically associated with varieties of normal lattice expansions (LE algebras). We work in the purely algebraic setting of perfect LEs; the formulas playing the role of Kracht's formulas in this generalized setting pertain to a first order language whose atoms are special inequalities between terms of perfect algebras. Via duality, formulas in this language can be equivalently translated into first order conditions in the frame correspondence languages of several types of relational semantics for LE-logics.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.