QoE-aware edge server placement in mobile edge computing using an enhanced genetic algorithm

Jinxiang Sha , Jintao Wu , Mingliang Wang , Yonglin Pu , Sheng Lu , Muhammad Bilal
{"title":"QoE-aware edge server placement in mobile edge computing using an enhanced genetic algorithm","authors":"Jinxiang Sha ,&nbsp;Jintao Wu ,&nbsp;Mingliang Wang ,&nbsp;Yonglin Pu ,&nbsp;Sheng Lu ,&nbsp;Muhammad Bilal","doi":"10.1016/j.ijin.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Mobile Edge Computing (MEC) enhances service quality by decentralizing computational resources to network edges, thereby reducing latency and improving Quality of Service (QoS). However, the spatial distribution of edge servers critically impacts network transmission efficiency, while heterogeneous user perceptions of QoS metrics frequently lead to suboptimal Quality of Experience (QoE). Current research on Edge Server Placement (ESP) predominantly focuses on localized optimization of QoS metrics, yet fails to adequately incorporate systematic QoE modeling and coordinated optimization frameworks, leading to significant discrepancies between actual user experience and satisfaction with resource allocation. To address this gap, this study establishes a formalized QoE-aware Edge Server Placement (EESP) framework by rigorously characterizing the interdependence between QoE and QoS. We first prove the NP-completeness of the EESP problem through computational complexity analysis. Subsequently, we develop an Integer Linear Programming-based exact solver (EESP-O) for small-scale scenarios and propose an Enhanced Genetic Algorithm (EESP-EGA) for large-scale deployments. The EESP-EGA integrates adaptive crossover probability mechanisms and elite retention strategies to achieve near-optimal solutions for complex real-world configurations. Experimental evaluations conducted on a broad range of real-world datasets demonstrate that the proposed method outperforms several existing representative approaches in terms of QoE.</div></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"6 ","pages":"Pages 65-78"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603025000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile Edge Computing (MEC) enhances service quality by decentralizing computational resources to network edges, thereby reducing latency and improving Quality of Service (QoS). However, the spatial distribution of edge servers critically impacts network transmission efficiency, while heterogeneous user perceptions of QoS metrics frequently lead to suboptimal Quality of Experience (QoE). Current research on Edge Server Placement (ESP) predominantly focuses on localized optimization of QoS metrics, yet fails to adequately incorporate systematic QoE modeling and coordinated optimization frameworks, leading to significant discrepancies between actual user experience and satisfaction with resource allocation. To address this gap, this study establishes a formalized QoE-aware Edge Server Placement (EESP) framework by rigorously characterizing the interdependence between QoE and QoS. We first prove the NP-completeness of the EESP problem through computational complexity analysis. Subsequently, we develop an Integer Linear Programming-based exact solver (EESP-O) for small-scale scenarios and propose an Enhanced Genetic Algorithm (EESP-EGA) for large-scale deployments. The EESP-EGA integrates adaptive crossover probability mechanisms and elite retention strategies to achieve near-optimal solutions for complex real-world configurations. Experimental evaluations conducted on a broad range of real-world datasets demonstrate that the proposed method outperforms several existing representative approaches in terms of QoE.
使用增强型遗传算法的移动边缘计算中的qos感知边缘服务器放置
移动边缘计算(MEC)通过将计算资源分散到网络边缘,从而降低延迟,提高服务质量,从而提高服务质量。然而,边缘服务器的空间分布严重影响网络传输效率,而用户对QoS指标的异质感知经常导致次优体验质量(QoE)。目前对边缘服务器布局(ESP)的研究主要集中在QoS指标的局部优化上,但未能充分结合系统的QoE建模和协调优化框架,导致实际用户体验与资源分配满意度之间存在显著差异。为了解决这一差距,本研究通过严格描述QoE和QoS之间的相互依赖关系,建立了一个形式化的QoS感知边缘服务器放置(EESP)框架。首先通过计算复杂度分析证明了esp问题的np完备性。随后,我们针对小规模场景开发了基于整数线性规划的精确求解器(EESP-O),并针对大规模部署提出了增强型遗传算法(EESP-EGA)。EESP-EGA集成了自适应交叉概率机制和精英保留策略,为复杂的现实配置提供了近乎最佳的解决方案。在广泛的现实世界数据集上进行的实验评估表明,所提出的方法在QoE方面优于几种现有的代表性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信