{"title":"Thermodynamic modeling CO2 absorption in semi-aqueous monoethanolamine with N-methyl-2-pyrrolidone using electrolyte NRTL model","authors":"Yi-Min Chen, Yu-Fan Chen, Yu-Jeng Lin","doi":"10.1016/j.fluid.2025.114532","DOIUrl":null,"url":null,"abstract":"<div><div>Partially replacing water with N-methyl-2-pyrrolidone (NMP) in aqueous monoethanolamine (MEA) solutions has been shown to reduce the energy demand of CO<sub>2</sub> capture. However, the absence of rigorous thermodynamic models for semi-aqueous MEA-NMP solvents hinders process design and optimization. This study develops a thermodynamic model for CO₂ absorption in NMP–H<sub>2</sub>O–MEA–CO<sub>2</sub> mixtures using the electrolyte NRTL framework. The model extends the established H<sub>2</sub>O–MEA–CO<sub>2</sub> system by incorporating NMP-specific parameters while preserving accuracy in the aqueous regime. A sequential regression approach is applied to correlate key properties relevant to CO<sub>2</sub> capture, including CO₂ solubility, excess enthalpy, heat of absorption, and liquid heat capacity across binary to quaternary systems. Viscosity and density are also modeled to support mass transfer calculations. To improve model accuracy, new CO<sub>2</sub> solubility data are measured for NMP–H₂O–MEA–CO<sub>2</sub> mixtures at 313–393 K. The model accurately represents CO<sub>2</sub> solubility across a wide range of CO<sub>2</sub> loadings, temperatures, and NMP contents, revealing a decrease in solubility and a 10–25 kJ/mol CO<sub>2</sub> increase in heat of absorption with NMP addition. The developed model enables rigorous process simulation and facilitates the design of energy-efficient CO<sub>2</sub> capture using semi-aqueous MEA-NMP solvents.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114532"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122500202X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Partially replacing water with N-methyl-2-pyrrolidone (NMP) in aqueous monoethanolamine (MEA) solutions has been shown to reduce the energy demand of CO2 capture. However, the absence of rigorous thermodynamic models for semi-aqueous MEA-NMP solvents hinders process design and optimization. This study develops a thermodynamic model for CO₂ absorption in NMP–H2O–MEA–CO2 mixtures using the electrolyte NRTL framework. The model extends the established H2O–MEA–CO2 system by incorporating NMP-specific parameters while preserving accuracy in the aqueous regime. A sequential regression approach is applied to correlate key properties relevant to CO2 capture, including CO₂ solubility, excess enthalpy, heat of absorption, and liquid heat capacity across binary to quaternary systems. Viscosity and density are also modeled to support mass transfer calculations. To improve model accuracy, new CO2 solubility data are measured for NMP–H₂O–MEA–CO2 mixtures at 313–393 K. The model accurately represents CO2 solubility across a wide range of CO2 loadings, temperatures, and NMP contents, revealing a decrease in solubility and a 10–25 kJ/mol CO2 increase in heat of absorption with NMP addition. The developed model enables rigorous process simulation and facilitates the design of energy-efficient CO2 capture using semi-aqueous MEA-NMP solvents.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.