Macropinocytosis maintains CAF subtype identity under metabolic stress in pancreatic cancer

IF 44.5 1区 医学 Q1 CELL BIOLOGY
Yijuan Zhang, Li Ling, Rabi Murad, Swetha Maganti, Ambroise Manceau, Hannah A. Hetrick, Madelaine Neff, Cheska Marie Galapate, Shea F. Grenier, Florent Carrette, Karen Duong-Polk, Anindya Bagchi, David A. Scott, Yoav Altman, Jennifer L. Hope, Andrew M. Lowy, Linda M. Bradley, Cosimo Commisso
{"title":"Macropinocytosis maintains CAF subtype identity under metabolic stress in pancreatic cancer","authors":"Yijuan Zhang, Li Ling, Rabi Murad, Swetha Maganti, Ambroise Manceau, Hannah A. Hetrick, Madelaine Neff, Cheska Marie Galapate, Shea F. Grenier, Florent Carrette, Karen Duong-Polk, Anindya Bagchi, David A. Scott, Yoav Altman, Jennifer L. Hope, Andrew M. Lowy, Linda M. Bradley, Cosimo Commisso","doi":"10.1016/j.ccell.2025.06.021","DOIUrl":null,"url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) tumors are glutamine deficient, and both tumor cells and cancer-associated fibroblasts (CAFs) rely on this amino acid to maintain fitness and induce macropinocytosis as an adaptive response. CAFs play a critical role in sculpting the tumor microenvironment, yet how adaptations to metabolic stress impact the stromal architecture remains elusive. In this study, we find that macropinocytosis sustains the myCAF phenotype under glutamine limitation by preventing inflammatory reprogramming. Our data demonstrate that metabolic stress induces an intrinsic inflammatory CAF (iCAF) program through MEK-ERK signaling. We find that blocking macropinocytosis <em>in vivo</em> promotes myCAF-to-iCAF transitions, remodeling the tumor stroma. Importantly, stromal remodeling driven by macropinocytosis inhibition—including iCAF enrichment, collagen reduction, immune cell infiltration, and vascular expansion—sensitizes PDAC tumors to immunotherapy and chemotherapy. Our findings reveal that inhibiting macropinocytosis promotes an inflammatory, less fibrotic tumor microenvironment that can be leveraged to improve therapeutic responses in PDAC.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"23 1","pages":""},"PeriodicalIF":44.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.06.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) tumors are glutamine deficient, and both tumor cells and cancer-associated fibroblasts (CAFs) rely on this amino acid to maintain fitness and induce macropinocytosis as an adaptive response. CAFs play a critical role in sculpting the tumor microenvironment, yet how adaptations to metabolic stress impact the stromal architecture remains elusive. In this study, we find that macropinocytosis sustains the myCAF phenotype under glutamine limitation by preventing inflammatory reprogramming. Our data demonstrate that metabolic stress induces an intrinsic inflammatory CAF (iCAF) program through MEK-ERK signaling. We find that blocking macropinocytosis in vivo promotes myCAF-to-iCAF transitions, remodeling the tumor stroma. Importantly, stromal remodeling driven by macropinocytosis inhibition—including iCAF enrichment, collagen reduction, immune cell infiltration, and vascular expansion—sensitizes PDAC tumors to immunotherapy and chemotherapy. Our findings reveal that inhibiting macropinocytosis promotes an inflammatory, less fibrotic tumor microenvironment that can be leveraged to improve therapeutic responses in PDAC.

Abstract Image

胰腺癌代谢应激下巨噬细胞增多症维持CAF亚型的特性
胰腺导管腺癌(PDAC)肿瘤缺乏谷氨酰胺,肿瘤细胞和癌症相关成纤维细胞(CAFs)都依赖这种氨基酸来维持适应性并诱导巨噬细胞增生作为适应性反应。CAFs在塑造肿瘤微环境中起着关键作用,但对代谢应激的适应如何影响基质结构仍然难以捉摸。在这项研究中,我们发现巨量红细胞增多症通过阻止炎症重编程来维持谷氨酰胺限制下的myCAF表型。我们的数据表明,代谢应激通过MEK-ERK信号传导诱导内在炎性CAF (iCAF)程序。我们发现,在体内阻断巨噬细胞作用可促进myca到icaf的转变,重塑肿瘤基质。重要的是,由巨噬细胞增多抑制(包括iCAF富集、胶原减少、免疫细胞浸润和血管扩张)驱动的基质重塑使PDAC肿瘤对免疫治疗和化疗敏感。我们的研究结果表明,抑制巨噬细胞增多可促进炎症性、纤维化程度较低的肿瘤微环境,从而改善PDAC的治疗反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Cell
Cancer Cell 医学-肿瘤学
CiteScore
55.20
自引率
1.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows: Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers. Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice. Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers. Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies. Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信