A Guide to Machine Learning Epistemic Ignorance, Hidden Paradoxes, and Other Tensions

M. Z. Naser
{"title":"A Guide to Machine Learning Epistemic Ignorance, Hidden Paradoxes, and Other Tensions","authors":"M. Z. Naser","doi":"10.1002/widm.70038","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has rapidly scaled in capacity and complexity, yet blind spots persist beneath its high performance façade. In order to shed more light on this argument, this paper presents a curated catalogue of 175 unconventional concepts, each capturing a paradox, tension, or overlooked risk in modern ML practice. Through nine themes spanning data quality, model architecture and training, interpretability and explainability, fairness and bias, model behavior and limitations, evaluation and metrics, multimodal and system integration, practical and societal implications, and causal reasoning, we provide conceptual definitions, illustrative examples, and actionable mitigation strategies. This review equips practitioners and researchers with a structured taxonomy for diagnosing and preempting the brittle edges of modern ML systems and offers a paradox detection and remediation framework (PDRF) to anticipate limitations, design more thoughtful evaluation protocols, and develop ML systems that balance predictive power with epistemic transparency.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Fundamental Concepts of Data and Knowledge &gt; Data Concepts</jats:list-item> <jats:list-item>Fundamental Concepts of Data and Knowledge &gt; Big Data Mining</jats:list-item> <jats:list-item>Technologies &gt; Computational Intelligence</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) has rapidly scaled in capacity and complexity, yet blind spots persist beneath its high performance façade. In order to shed more light on this argument, this paper presents a curated catalogue of 175 unconventional concepts, each capturing a paradox, tension, or overlooked risk in modern ML practice. Through nine themes spanning data quality, model architecture and training, interpretability and explainability, fairness and bias, model behavior and limitations, evaluation and metrics, multimodal and system integration, practical and societal implications, and causal reasoning, we provide conceptual definitions, illustrative examples, and actionable mitigation strategies. This review equips practitioners and researchers with a structured taxonomy for diagnosing and preempting the brittle edges of modern ML systems and offers a paradox detection and remediation framework (PDRF) to anticipate limitations, design more thoughtful evaluation protocols, and develop ML systems that balance predictive power with epistemic transparency.This article is categorized under: Fundamental Concepts of Data and Knowledge > Data Concepts Fundamental Concepts of Data and Knowledge > Big Data Mining Technologies > Computational Intelligence
机器学习认知无知、隐藏的悖论和其他紧张关系指南
机器学习(ML)在容量和复杂性方面迅速扩大,但在其高性能表面下仍然存在盲点。为了更清楚地阐明这一论点,本文提出了175个非常规概念的策划目录,每个概念都抓住了现代机器学习实践中的悖论、紧张或被忽视的风险。通过九个主题,包括数据质量、模型架构和训练、可解释性和可解释性、公平性和偏见、模型行为和局限性、评估和度量、多模态和系统集成、实际和社会影响以及因果推理,我们提供了概念定义、说明性示例和可操作的缓解策略。这篇综述为从业者和研究人员提供了一个结构化的分类来诊断和预防现代机器学习系统的脆弱边缘,并提供了一个悖论检测和补救框架(PDRF)来预测局限性,设计更深思熟虑的评估协议,并开发平衡预测能力和认知透明度的机器学习系统。本文分类如下:数据和知识的基本概念>;数据与知识的基本概念大数据挖掘技术;计算智能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信