{"title":"Pharmaco-nutraceutical improvement of the response to obeticholic acid with omega-3 polyunsaturated fatty acids.","authors":"Audrey-Anne Lavoie,Ariane Thérien,Anisia Silva,Emanuel Paré,Anna Ciešlak,William Gagnon,Clémence Desjardins,Mélanie Verreault,Jocelyn Trottier,Marie-Claude Vohl,Jean-Philippe Drouin-Chartier,Jacques Corbeil,Alexandre Caron,Olivier Barbier","doi":"10.1042/bcj20253113","DOIUrl":null,"url":null,"abstract":"Obeticholic acid (OCA) is the second line therapy for primary biliary cholangitis. While efficient in promoting BA detoxification and limiting liver fibrosis, its clinical use is restricted by severe dose-dependent side effects. We tested the hypothesis that adding n-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids to OCA may improve the therapeutic effect of the low drug dosage. Several liver cell lines were exposed to vehicle, low or high OCA dose (1-20μM) in the presence or absence of EPA/DHA for 24H. To induce ER stress, apoptosis, and fibrosis, HepG2 cells were exposed to a 400μM BA mixture or to 2ng/mL TGF-β. For inflammation analyses, THP-1 cells were activated with 100ng/mL LPS. The impact OCA+EPA/DHA was assessed using transcriptomic (qRT-PCR), proteomic (ELISA, caspase-3), and metabolomic (LC-MS/MS) approaches. The addition of EPA/DHA reinforced the ability of low OCA dose to down-regulate the expression of genes involved in BA synthesis (CYP7A1, CYP8B1) and uptake (NTCP) and to up-regulate MRP2 & 3 genes expression. EPA/DHA also enhanced the anti-inflammatory response of the drug by reducing the expression of the LPS-induced cytokines: TNFα, IL-6, IL-1β and MCP-1 in THP-1 macrophages. OCA+EPA/DHA decreased the expression of BIP, CHOP and COL1A1 genes and the caspase-3 activity. EPA+DHA potentiate the response to low OCA doses on BA toxicity, and provide additional benefits on ER stress, apoptosis, inflammation and fibrosis. These observations support the idea that adding n-3 polyunsaturated fatty acids to the drug may reduce the risk of dose-related side effects in patients treated with OCA.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"17 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20253113","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obeticholic acid (OCA) is the second line therapy for primary biliary cholangitis. While efficient in promoting BA detoxification and limiting liver fibrosis, its clinical use is restricted by severe dose-dependent side effects. We tested the hypothesis that adding n-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids to OCA may improve the therapeutic effect of the low drug dosage. Several liver cell lines were exposed to vehicle, low or high OCA dose (1-20μM) in the presence or absence of EPA/DHA for 24H. To induce ER stress, apoptosis, and fibrosis, HepG2 cells were exposed to a 400μM BA mixture or to 2ng/mL TGF-β. For inflammation analyses, THP-1 cells were activated with 100ng/mL LPS. The impact OCA+EPA/DHA was assessed using transcriptomic (qRT-PCR), proteomic (ELISA, caspase-3), and metabolomic (LC-MS/MS) approaches. The addition of EPA/DHA reinforced the ability of low OCA dose to down-regulate the expression of genes involved in BA synthesis (CYP7A1, CYP8B1) and uptake (NTCP) and to up-regulate MRP2 & 3 genes expression. EPA/DHA also enhanced the anti-inflammatory response of the drug by reducing the expression of the LPS-induced cytokines: TNFα, IL-6, IL-1β and MCP-1 in THP-1 macrophages. OCA+EPA/DHA decreased the expression of BIP, CHOP and COL1A1 genes and the caspase-3 activity. EPA+DHA potentiate the response to low OCA doses on BA toxicity, and provide additional benefits on ER stress, apoptosis, inflammation and fibrosis. These observations support the idea that adding n-3 polyunsaturated fatty acids to the drug may reduce the risk of dose-related side effects in patients treated with OCA.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling