Using Open-Source Large Language Models to Identify Access to Germline Genetic Testing in Veterans With Breast Cancer From Unstructured Text.

IF 2.8 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-07-01 Epub Date: 2025-07-22 DOI:10.1200/CCI-24-00263
Chunyang Li, Michael Stringer, Vikas Patil, Richard Mcshinsky, Deborah Morreall, Christina Yong, Kelli M Rasmussen, Zachary Burningham, Suzanne Tamang, Carolyn S Menendez, Akiko Chiba, Haley A Moss, Sarah Colonna, Kerry Rowe, Daphne Friedman, Michael J Kelley, Ahmad Halwani
{"title":"Using Open-Source Large Language Models to Identify Access to Germline Genetic Testing in Veterans With Breast Cancer From Unstructured Text.","authors":"Chunyang Li, Michael Stringer, Vikas Patil, Richard Mcshinsky, Deborah Morreall, Christina Yong, Kelli M Rasmussen, Zachary Burningham, Suzanne Tamang, Carolyn S Menendez, Akiko Chiba, Haley A Moss, Sarah Colonna, Kerry Rowe, Daphne Friedman, Michael J Kelley, Ahmad Halwani","doi":"10.1200/CCI-24-00263","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The ability of large language models (LLMs) to identify access to germline genetic testing from unstructured text remains unknown. The Department of Veterans Affairs (VA) assessed access in Veterans with breast cancer by implementing and evaluating the performance of open-source, locally deployable LLMs (Llama 3 70B, Llama 3 8B, and Llama 2 70B) in identifying access from clinical/consult notes.</p><p><strong>Methods: </strong>We identified a cohort of 1,201 Veterans diagnosed with breast cancer between January 1, 2021, and December 31, 2022, who received cancer care within the nationwide VA system and had clinical and/or consult notes available. Notes from a subset of 200 randomly selected patients, reviewed by subject-matter experts to identify access to testing, were split into development and testing sets, and various hyperparameters and prompting approaches were applied. We evaluated LLM performance using accuracy, precision, recall, and F1, with expert consensus on the labeled subset serving as ground truth. We compared LLM-identified access distribution in the entire cohort with expert-identified access in the labeled subset using the chi-squared test.</p><p><strong>Results: </strong>Llama 3 70B achieved an F1 score of 0.912 (95% CI, 0.853 to 0.971), besting Llama 3 8B (F1: 0.811; 95% CI, 0.720 to 0.901) and significantly outperforming Llama 2 70B (F1: 0.644; 95% CI, 0.514 to 0.773; the test set target variable prevalence was 0.72.) We observed no significant difference between the performance of Llama 3 70B and that of the average individual expert reviewer, nor between LLM-identified access distribution across the entire cohort and expert-identified distribution in the labeled subset.</p><p><strong>Conclusion: </strong>An open-source, locally deployable LLM effectively and efficiently identified germline genetic testing access from clinical notes. LLMs may enhance care quality and efficiency, while safeguarding sensitive data.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400263"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The ability of large language models (LLMs) to identify access to germline genetic testing from unstructured text remains unknown. The Department of Veterans Affairs (VA) assessed access in Veterans with breast cancer by implementing and evaluating the performance of open-source, locally deployable LLMs (Llama 3 70B, Llama 3 8B, and Llama 2 70B) in identifying access from clinical/consult notes.

Methods: We identified a cohort of 1,201 Veterans diagnosed with breast cancer between January 1, 2021, and December 31, 2022, who received cancer care within the nationwide VA system and had clinical and/or consult notes available. Notes from a subset of 200 randomly selected patients, reviewed by subject-matter experts to identify access to testing, were split into development and testing sets, and various hyperparameters and prompting approaches were applied. We evaluated LLM performance using accuracy, precision, recall, and F1, with expert consensus on the labeled subset serving as ground truth. We compared LLM-identified access distribution in the entire cohort with expert-identified access in the labeled subset using the chi-squared test.

Results: Llama 3 70B achieved an F1 score of 0.912 (95% CI, 0.853 to 0.971), besting Llama 3 8B (F1: 0.811; 95% CI, 0.720 to 0.901) and significantly outperforming Llama 2 70B (F1: 0.644; 95% CI, 0.514 to 0.773; the test set target variable prevalence was 0.72.) We observed no significant difference between the performance of Llama 3 70B and that of the average individual expert reviewer, nor between LLM-identified access distribution across the entire cohort and expert-identified distribution in the labeled subset.

Conclusion: An open-source, locally deployable LLM effectively and efficiently identified germline genetic testing access from clinical notes. LLMs may enhance care quality and efficiency, while safeguarding sensitive data.

Abstract Image

Abstract Image

Abstract Image

使用开源大型语言模型从非结构化文本中识别乳腺癌退伍军人生殖系基因测试的访问。
目的:大型语言模型(llm)从非结构化文本中识别生殖系基因检测的能力仍然未知。退伍军人事务部(VA)通过实施和评估开源、本地部署的llm (Llama 370b、Llama 38b和Llama 270b)在识别临床/咨询记录中的访问权限方面的表现,评估了患有乳腺癌的退伍军人的访问权限。方法:我们确定了2021年1月1日至2022年12月31日期间被诊断患有乳腺癌的1201名退伍军人,他们在全国VA系统内接受了癌症治疗,并有临床和/或咨询记录。从200名随机选择的患者中抽取笔记,由主题专家进行审查,以确定是否可以进行测试,这些笔记被分为开发组和测试组,并应用了各种超参数和提示方法。我们使用准确性、精密度、召回率和F1来评估LLM的性能,专家对标记子集的共识作为基本真理。我们使用卡方检验比较了整个队列中llm识别的访问分布与标记子集中专家识别的访问分布。结果:羊驼370b的F1评分为0.912 (95% CI: 0.853 ~ 0.971),优于羊驼38b (F1: 0.811;95% CI, 0.720 ~ 0.901),显著优于Llama 270b (F1: 0.644;95% CI, 0.514 ~ 0.773;测试设定的目标可变患病率为0.72。)我们观察到Llama 370b的表现与一般专家审稿人的表现之间没有显著差异,在整个队列中llm识别的访问分布与标记子集中专家识别的分布之间也没有显著差异。结论:一个开源的、可在本地部署的LLM可以有效地从临床记录中识别生殖系基因检测。法学硕士可以提高护理质量和效率,同时保护敏感数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信