Chen-Meng Song, Ta-Hui Lin, Hou-Tan Huang, Jeng-Yuan Yao
{"title":"Illuminating diabetes <i>via</i> multi-omics: Unraveling disease mechanisms and advancing personalized therapy.","authors":"Chen-Meng Song, Ta-Hui Lin, Hou-Tan Huang, Jeng-Yuan Yao","doi":"10.4239/wjd.v16.i7.106218","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 7","pages":"106218"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i7.106218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.