{"title":"Graph-guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information.","authors":"Wenrui Li, Qiyiwen Zhang, Kewen Qu, Qi Long","doi":"10.1007/s12561-024-09452-7","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-024-09452-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.