Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.

IF 6.8 1区 医学 Q1 ONCOLOGY
Jingyang He, Jingli Xu, Wujie Chen, Mengxuan Cao, Jiaqing Zhang, Qing Yang, Enze Li, Ruolan Zhang, Yahang Tong, Yanqiang Zhang, Chen Gao, Qianyu Zhao, Zhiyuan Xu, Lijing Wang, Xiangdong Cheng, Guoliang Zheng, Siwei Pan, Can Hu
{"title":"Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.","authors":"Jingyang He, Jingli Xu, Wujie Chen, Mengxuan Cao, Jiaqing Zhang, Qing Yang, Enze Li, Ruolan Zhang, Yahang Tong, Yanqiang Zhang, Chen Gao, Qianyu Zhao, Zhiyuan Xu, Lijing Wang, Xiangdong Cheng, Guoliang Zheng, Siwei Pan, Can Hu","doi":"10.1038/s41698-025-01055-9","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"249"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-01055-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.

基于术前CT图像中2.5D放射学数据的T1N0胃癌诊断深度学习模型的开发
早期胃癌(EGC)的早期发现和精确的术前分期至关重要。因此,本研究旨在建立一种基于门静脉期CT图像的深度学习模型,以准确区分无淋巴结转移的EGC。本研究纳入了2006年至2019年在中国两家医疗中心接受根治性手术的3164例胃癌患者。此外,2.5D放射学数据和多实例学习(MIL)是本研究中应用的新方法。基于2.5D放射学数据和MIL的特征选择,ResNet101模型与XGBoost模型结合对pT1N0 GC的诊断效果令人满意。此外,与传统放射组学模型和临床模型相比,基于2.5D mil的模型显示出明显优越的预测性能。我们首先构建了基于2.5D放射组学和MIL的深度学习预测模型,可有效诊断pT1N0 GC患者,为个性化治疗选择提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信