{"title":"Molecular Function of Midnolin and Its Relevance to Parkinson's Disease.","authors":"Yutaro Obara, Ayano Chiba","doi":"10.1080/10985549.2025.2535666","DOIUrl":null,"url":null,"abstract":"<p><p>Midnolin (<i>Midn</i>) was originally discovered as a gene expressed specifically in the mouse midbrain at the embryonic developmental stage; MIDN was localized in the nucleus/nucleolus. Although the pathophysiological roles of MIDN remained largely unknown for many years after its discovery, its molecular functions and relevance to diseases have gradually become clearer. In PC12 cells, a rat neuronal model cell line, liquidity factors that are necessary for neurite outgrowth are reported to induce <i>Midn</i> gene expression. In addition, MIDN is required for E3 ubiquitin-protein ligase parkin expression, suggesting that MIDN is important for the development and maintenance of neuronal functions. Notably, it was recently reported that MIDN plays fundamental roles in the ubiquitin-independent proteasomal degradation of various nuclear proteins and transcription factors. Regarding the relationship between MIDN and diseases, copy number loss of <i>MIDN</i> is associated with Parkinson's disease, suggesting that <i>MIDN</i> is a genetic risk factor for this disease. In addition, MIDN is relevant to many types of malignant cancer, including B-cell lymphoma and liver cancer. Thus, MIDN is an essential molecule for the maintenance of homeostasis, and its functional disorder triggers multiple diseases depending on the affected tissues/organs. <i>MIDN</i> therefore shows promise as a potential therapeutic target and prognostic biomarker.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"471-480"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2535666","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Midnolin (Midn) was originally discovered as a gene expressed specifically in the mouse midbrain at the embryonic developmental stage; MIDN was localized in the nucleus/nucleolus. Although the pathophysiological roles of MIDN remained largely unknown for many years after its discovery, its molecular functions and relevance to diseases have gradually become clearer. In PC12 cells, a rat neuronal model cell line, liquidity factors that are necessary for neurite outgrowth are reported to induce Midn gene expression. In addition, MIDN is required for E3 ubiquitin-protein ligase parkin expression, suggesting that MIDN is important for the development and maintenance of neuronal functions. Notably, it was recently reported that MIDN plays fundamental roles in the ubiquitin-independent proteasomal degradation of various nuclear proteins and transcription factors. Regarding the relationship between MIDN and diseases, copy number loss of MIDN is associated with Parkinson's disease, suggesting that MIDN is a genetic risk factor for this disease. In addition, MIDN is relevant to many types of malignant cancer, including B-cell lymphoma and liver cancer. Thus, MIDN is an essential molecule for the maintenance of homeostasis, and its functional disorder triggers multiple diseases depending on the affected tissues/organs. MIDN therefore shows promise as a potential therapeutic target and prognostic biomarker.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.